
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
piRNA-guided co-transcriptional silencing coopts nuclear export factors
Martin Fabry, Filippo Ciabrelli, Marzia Munafò, et al.
eLife (2019) Vol. 8
Open Access | Times Cited: 77
Martin Fabry, Filippo Ciabrelli, Marzia Munafò, et al.
eLife (2019) Vol. 8
Open Access | Times Cited: 77
Showing 1-25 of 77 citing articles:
Emerging roles and functional mechanisms of PIWI-interacting RNAs
Xin Wang, Anne Ramat, Martine Simonelig, et al.
Nature Reviews Molecular Cell Biology (2022) Vol. 24, Iss. 2, pp. 123-141
Closed Access | Times Cited: 148
Xin Wang, Anne Ramat, Martine Simonelig, et al.
Nature Reviews Molecular Cell Biology (2022) Vol. 24, Iss. 2, pp. 123-141
Closed Access | Times Cited: 148
A Heterochromatin-Specific RNA Export Pathway Facilitates piRNA Production
Mostafa F. ElMaghraby, Peter Refsing Andersen, Florian Pühringer, et al.
Cell (2019) Vol. 178, Iss. 4, pp. 964-979.e20
Open Access | Times Cited: 106
Mostafa F. ElMaghraby, Peter Refsing Andersen, Florian Pühringer, et al.
Cell (2019) Vol. 178, Iss. 4, pp. 964-979.e20
Open Access | Times Cited: 106
Roles of piRNAs in transposon and pseudogene regulation of germline mRNAs and lncRNAs
Chen Wang, Haifan Lin
Genome biology (2021) Vol. 22, Iss. 1
Open Access | Times Cited: 97
Chen Wang, Haifan Lin
Genome biology (2021) Vol. 22, Iss. 1
Open Access | Times Cited: 97
The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation
Júlia Batki, Jakob Schnabl, Juncheng Wang, et al.
Nature Structural & Molecular Biology (2019) Vol. 26, Iss. 8, pp. 720-731
Open Access | Times Cited: 93
Júlia Batki, Jakob Schnabl, Juncheng Wang, et al.
Nature Structural & Molecular Biology (2019) Vol. 26, Iss. 8, pp. 720-731
Open Access | Times Cited: 93
Su(var)2-10 and the SUMO Pathway Link piRNA-Guided Target Recognition to Chromatin Silencing
Maria Ninova, Yung-Chia Ariel Chen, Baira Godneeva, et al.
Molecular Cell (2019) Vol. 77, Iss. 3, pp. 556-570.e6
Open Access | Times Cited: 92
Maria Ninova, Yung-Chia Ariel Chen, Baira Godneeva, et al.
Molecular Cell (2019) Vol. 77, Iss. 3, pp. 556-570.e6
Open Access | Times Cited: 92
Transposon–host arms race: a saga of genome evolution
Yuka W. Iwasaki, Keisuke Shoji, Shinichi Nakagwa, et al.
Trends in Genetics (2025)
Closed Access | Times Cited: 1
Yuka W. Iwasaki, Keisuke Shoji, Shinichi Nakagwa, et al.
Trends in Genetics (2025)
Closed Access | Times Cited: 1
The transcription factor Traffic jam orchestrates the somatic piRNA pathway in Drosophila ovaries
Azad Alizada, Aline Redondo Martins, Nolwenn Mouniée, et al.
Cell Reports (2025), pp. 115453-115453
Open Access | Times Cited: 1
Azad Alizada, Aline Redondo Martins, Nolwenn Mouniée, et al.
Cell Reports (2025), pp. 115453-115453
Open Access | Times Cited: 1
Nuclear RNA export factor variant initiates piRNA‐guided co‐transcriptional silencing
Kensaku Murano, Yuka W. Iwasaki, Hirotsugu Ishizu, et al.
The EMBO Journal (2019) Vol. 38, Iss. 17
Open Access | Times Cited: 72
Kensaku Murano, Yuka W. Iwasaki, Hirotsugu Ishizu, et al.
The EMBO Journal (2019) Vol. 38, Iss. 17
Open Access | Times Cited: 72
The piRNA pathway in <i>Drosophila</i> ovarian germ and somatic cells
Kaoru Sato, Mikiko C. Siomi
Proceedings of the Japan Academy Series B (2020) Vol. 96, Iss. 1, pp. 32-42
Open Access | Times Cited: 68
Kaoru Sato, Mikiko C. Siomi
Proceedings of the Japan Academy Series B (2020) Vol. 96, Iss. 1, pp. 32-42
Open Access | Times Cited: 68
Functions of PIWI Proteins in Gene Regulation: New Arrows Added to the piRNA Quiver
Anne Ramat, Martine Simonelig
Trends in Genetics (2020) Vol. 37, Iss. 2, pp. 188-200
Open Access | Times Cited: 68
Anne Ramat, Martine Simonelig
Trends in Genetics (2020) Vol. 37, Iss. 2, pp. 188-200
Open Access | Times Cited: 68
Specialization of theDrosophilanuclear export family protein Nxf3 for piRNA precursor export
Emma Kneuss, Marzia Munafò, Evelyn L. Eastwood, et al.
Genes & Development (2019) Vol. 33, Iss. 17-18, pp. 1208-1220
Open Access | Times Cited: 67
Emma Kneuss, Marzia Munafò, Evelyn L. Eastwood, et al.
Genes & Development (2019) Vol. 33, Iss. 17-18, pp. 1208-1220
Open Access | Times Cited: 67
A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation
Kang Zhao, Sha Cheng, Na Miao, et al.
Nature Cell Biology (2019) Vol. 21, Iss. 10, pp. 1261-1272
Closed Access | Times Cited: 64
Kang Zhao, Sha Cheng, Na Miao, et al.
Nature Cell Biology (2019) Vol. 21, Iss. 10, pp. 1261-1272
Closed Access | Times Cited: 64
Crystal structure of Drosophila Piwi
Sonomi Yamaguchi, Akira Oe, Kazumichi M. Nishida, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 64
Sonomi Yamaguchi, Akira Oe, Kazumichi M. Nishida, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 64
piRNA‐ and siRNA‐mediated transcriptional repression in Drosophila , mice, and yeast: new insights and biodiversity
Ryo Onishi, Soichiro Yamanaka, Mikiko C. Siomi
EMBO Reports (2021) Vol. 22, Iss. 10
Open Access | Times Cited: 51
Ryo Onishi, Soichiro Yamanaka, Mikiko C. Siomi
EMBO Reports (2021) Vol. 22, Iss. 10
Open Access | Times Cited: 51
Panoramix SUMOylation on chromatin connects the piRNA pathway to the cellular heterochromatin machinery
Veselin I. Andreev, Changwei Yu, Juncheng Wang, et al.
Nature Structural & Molecular Biology (2022) Vol. 29, Iss. 2, pp. 130-142
Closed Access | Times Cited: 33
Veselin I. Andreev, Changwei Yu, Juncheng Wang, et al.
Nature Structural & Molecular Biology (2022) Vol. 29, Iss. 2, pp. 130-142
Closed Access | Times Cited: 33
Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis
Martin Fabry, Federica A. Falconio, Fadwa Joud, et al.
eLife (2021) Vol. 10
Open Access | Times Cited: 39
Martin Fabry, Federica A. Falconio, Fadwa Joud, et al.
eLife (2021) Vol. 10
Open Access | Times Cited: 39
Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila
Evelyn L. Eastwood, Kayla A. Jara, Susanne Bornelöv, et al.
eLife (2021) Vol. 10
Open Access | Times Cited: 37
Evelyn L. Eastwood, Kayla A. Jara, Susanne Bornelöv, et al.
eLife (2021) Vol. 10
Open Access | Times Cited: 37
RDC complex executes a dynamic piRNA program during Drosophila spermatogenesis to safeguard male fertility
Peiwei Chen, Yicheng Luo, Alexei A. Aravin
PLoS Genetics (2021) Vol. 17, Iss. 9, pp. e1009591-e1009591
Open Access | Times Cited: 37
Peiwei Chen, Yicheng Luo, Alexei A. Aravin
PLoS Genetics (2021) Vol. 17, Iss. 9, pp. e1009591-e1009591
Open Access | Times Cited: 37
The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved
Yu Sun, Brent Lee, Xin Zhiguo Li
Mammalian Genome (2021) Vol. 33, Iss. 2, pp. 293-311
Open Access | Times Cited: 33
Yu Sun, Brent Lee, Xin Zhiguo Li
Mammalian Genome (2021) Vol. 33, Iss. 2, pp. 293-311
Open Access | Times Cited: 33
The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation
Bruno Mugat, Simon Nicot, Carolina Varela‐Chavez, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 39
Bruno Mugat, Simon Nicot, Carolina Varela‐Chavez, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 39
Environmentally-Induced Transgenerational Epigenetic Inheritance: Implication of PIWI Interacting RNAs
Karine Casier, Antoine Boivin, Clément Carré, et al.
Cells (2019) Vol. 8, Iss. 9, pp. 1108-1108
Open Access | Times Cited: 36
Karine Casier, Antoine Boivin, Clément Carré, et al.
Cells (2019) Vol. 8, Iss. 9, pp. 1108-1108
Open Access | Times Cited: 36
Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex
Jakob Schnabl, Juncheng Wang, Ulrich Hohmann, et al.
Genes & Development (2021) Vol. 35, Iss. 5-6, pp. 392-409
Open Access | Times Cited: 32
Jakob Schnabl, Juncheng Wang, Ulrich Hohmann, et al.
Genes & Development (2021) Vol. 35, Iss. 5-6, pp. 392-409
Open Access | Times Cited: 32
Piwi-Interacting RNAs: A New Class of Regulator in Human Breast Cancer
Qian Lu, Heying Xie, Libo Zhang, et al.
Frontiers in Oncology (2021) Vol. 11
Open Access | Times Cited: 27
Qian Lu, Heying Xie, Libo Zhang, et al.
Frontiers in Oncology (2021) Vol. 11
Open Access | Times Cited: 27
Recent advances of PIWI‐interacting RNA in cardiovascular diseases
Bo Li, Kai Wang, Wei Cheng, et al.
Clinical and Translational Medicine (2024) Vol. 14, Iss. 8
Open Access | Times Cited: 4
Bo Li, Kai Wang, Wei Cheng, et al.
Clinical and Translational Medicine (2024) Vol. 14, Iss. 8
Open Access | Times Cited: 4