
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation
Thomas A. Sasani, Brent S. Pedersen, Ziyue Gao, et al.
eLife (2019) Vol. 8
Open Access | Times Cited: 166
Thomas A. Sasani, Brent S. Pedersen, Ziyue Gao, et al.
eLife (2019) Vol. 8
Open Access | Times Cited: 166
Showing 1-25 of 166 citing articles:
The genomics of oxidative DNA damage, repair, and resulting mutagenesis
Anna R. Poetsch
Computational and Structural Biotechnology Journal (2020) Vol. 18, pp. 207-219
Open Access | Times Cited: 302
Anna R. Poetsch
Computational and Structural Biotechnology Journal (2020) Vol. 18, pp. 207-219
Open Access | Times Cited: 302
Overlooked roles of DNA damage and maternal age in generating human germline mutations
Ziyue Gao, Priya Moorjani, Thomas A. Sasani, et al.
Proceedings of the National Academy of Sciences (2019) Vol. 116, Iss. 19, pp. 9491-9500
Open Access | Times Cited: 205
Ziyue Gao, Priya Moorjani, Thomas A. Sasani, et al.
Proceedings of the National Academy of Sciences (2019) Vol. 116, Iss. 19, pp. 9491-9500
Open Access | Times Cited: 205
Evolution of the germline mutation rate across vertebrates
Lucie A. Bergeron, Søren Besenbacher, Jiao Zheng, et al.
Nature (2023) Vol. 615, Iss. 7951, pp. 285-291
Open Access | Times Cited: 196
Lucie A. Bergeron, Søren Besenbacher, Jiao Zheng, et al.
Nature (2023) Vol. 615, Iss. 7951, pp. 285-291
Open Access | Times Cited: 196
Differences between germline genomes of monozygotic twins
Hákon Jónsson, Erna Magnúsdóttir, Hannes P. Eggertsson, et al.
Nature Genetics (2021) Vol. 53, Iss. 1, pp. 27-34
Closed Access | Times Cited: 144
Hákon Jónsson, Erna Magnúsdóttir, Hannes P. Eggertsson, et al.
Nature Genetics (2021) Vol. 53, Iss. 1, pp. 27-34
Closed Access | Times Cited: 144
Genetic and chemotherapeutic influences on germline hypermutation
Joanna Kaplanis, Benjamin Ide, Rashesh Sanghvi, et al.
Nature (2022) Vol. 605, Iss. 7910, pp. 503-508
Open Access | Times Cited: 74
Joanna Kaplanis, Benjamin Ide, Rashesh Sanghvi, et al.
Nature (2022) Vol. 605, Iss. 7910, pp. 503-508
Open Access | Times Cited: 74
De Novo Mutations Reflect Development and Aging of the Human Germline
Jakob M. Goldmann, Joris A. Veltman, Christian Gilissen
Trends in Genetics (2019) Vol. 35, Iss. 11, pp. 828-839
Open Access | Times Cited: 104
Jakob M. Goldmann, Joris A. Veltman, Christian Gilissen
Trends in Genetics (2019) Vol. 35, Iss. 11, pp. 828-839
Open Access | Times Cited: 104
Hotspots of Human Mutation
Alex Nesta, Denisse Tafur, Christine R. Beck
Trends in Genetics (2020) Vol. 37, Iss. 8, pp. 717-729
Open Access | Times Cited: 103
Alex Nesta, Denisse Tafur, Christine R. Beck
Trends in Genetics (2020) Vol. 37, Iss. 8, pp. 717-729
Open Access | Times Cited: 103
Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases
Francisco M. De La Vega, Shimul Chowdhury, Barry Moore, et al.
Genome Medicine (2021) Vol. 13, Iss. 1
Open Access | Times Cited: 99
Francisco M. De La Vega, Shimul Chowdhury, Barry Moore, et al.
Genome Medicine (2021) Vol. 13, Iss. 1
Open Access | Times Cited: 99
Pedigree-based estimation of human mobile element retrotransposition rates
Julie Feusier, W. Scott Watkins, Jainy Thomas, et al.
Genome Research (2019) Vol. 29, Iss. 10, pp. 1567-1577
Open Access | Times Cited: 97
Julie Feusier, W. Scott Watkins, Jainy Thomas, et al.
Genome Research (2019) Vol. 29, Iss. 10, pp. 1567-1577
Open Access | Times Cited: 97
De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population
Michael D. Kessler, Douglas P. Loesch, James A. Perry, et al.
Proceedings of the National Academy of Sciences (2020) Vol. 117, Iss. 5, pp. 2560-2569
Open Access | Times Cited: 95
Michael D. Kessler, Douglas P. Loesch, James A. Perry, et al.
Proceedings of the National Academy of Sciences (2020) Vol. 117, Iss. 5, pp. 2560-2569
Open Access | Times Cited: 95
De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families
Jonathan R. Belyeu, Harrison Brand, Harold Wang, et al.
The American Journal of Human Genetics (2021) Vol. 108, Iss. 4, pp. 597-607
Open Access | Times Cited: 85
Jonathan R. Belyeu, Harrison Brand, Harold Wang, et al.
The American Journal of Human Genetics (2021) Vol. 108, Iss. 4, pp. 597-607
Open Access | Times Cited: 85
Effective variant filtering and expected candidate variant yield in studies of rare human disease
Brent S. Pedersen, Joe Brown, Harriet Dashnow, et al.
npj Genomic Medicine (2021) Vol. 6, Iss. 1
Open Access | Times Cited: 81
Brent S. Pedersen, Joe Brown, Harriet Dashnow, et al.
npj Genomic Medicine (2021) Vol. 6, Iss. 1
Open Access | Times Cited: 81
Population sequencing data reveal a compendium of mutational processes in the human germ line
Vladimir B. Seplyarskiy, Ruslan Soldatov, Evan Koch, et al.
Science (2021) Vol. 373, Iss. 6558, pp. 1030-1035
Open Access | Times Cited: 62
Vladimir B. Seplyarskiy, Ruslan Soldatov, Evan Koch, et al.
Science (2021) Vol. 373, Iss. 6558, pp. 1030-1035
Open Access | Times Cited: 62
The Mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates
Lucie A. Bergeron, Søren Besenbacher, Tychele N. Turner, et al.
eLife (2022) Vol. 11
Open Access | Times Cited: 56
Lucie A. Bergeron, Søren Besenbacher, Tychele N. Turner, et al.
eLife (2022) Vol. 11
Open Access | Times Cited: 56
A natural mutator allele shapes mutation spectrum variation in mice
Thomas A. Sasani, David G. Ashbrook, Annabel C. Beichman, et al.
Nature (2022) Vol. 605, Iss. 7910, pp. 497-502
Open Access | Times Cited: 50
Thomas A. Sasani, David G. Ashbrook, Annabel C. Beichman, et al.
Nature (2022) Vol. 605, Iss. 7910, pp. 497-502
Open Access | Times Cited: 50
The impact of paternal age on new mutations and disease in the next generation
K Wood, Anne Goriely
Fertility and Sterility (2022) Vol. 118, Iss. 6, pp. 1001-1012
Open Access | Times Cited: 43
K Wood, Anne Goriely
Fertility and Sterility (2022) Vol. 118, Iss. 6, pp. 1001-1012
Open Access | Times Cited: 43
A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell division numbers
Marc de Manuel, Felix L. Wu, Molly Przeworski
eLife (2022) Vol. 11
Open Access | Times Cited: 40
Marc de Manuel, Felix L. Wu, Molly Przeworski
eLife (2022) Vol. 11
Open Access | Times Cited: 40
De novo Mutations in Domestic Cat are Consistent with an Effect of Reproductive Longevity on Both the Rate and Spectrum of Mutations
Richard J. Wang, Muthuswamy Raveendran, R. Alan Harris, et al.
Molecular Biology and Evolution (2022) Vol. 39, Iss. 7
Open Access | Times Cited: 38
Richard J. Wang, Muthuswamy Raveendran, R. Alan Harris, et al.
Molecular Biology and Evolution (2022) Vol. 39, Iss. 7
Open Access | Times Cited: 38
De novo mutations, genetic mosaicism and human disease
Mohiuddin Mohiuddin, R. Frank Kooy, Christopher E. Pearson
Frontiers in Genetics (2022) Vol. 13
Open Access | Times Cited: 38
Mohiuddin Mohiuddin, R. Frank Kooy, Christopher E. Pearson
Frontiers in Genetics (2022) Vol. 13
Open Access | Times Cited: 38
Personalized recurrence risk assessment following the birth of a child with a pathogenic de novo mutation
Marie Bernkopf, Ummi B. Abdullah, Stephen J. Bush, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 27
Marie Bernkopf, Ummi B. Abdullah, Stephen J. Bush, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 27
Human embryonic genetic mosaicism and its effects on development and disease
Sarah M. Waldvogel, Jennifer E. Posey, Margaret A. Goodell
Nature Reviews Genetics (2024)
Closed Access | Times Cited: 13
Sarah M. Waldvogel, Jennifer E. Posey, Margaret A. Goodell
Nature Reviews Genetics (2024)
Closed Access | Times Cited: 13
A familial, telomere-to-telomere reference for humande novomutation and recombination from a four-generation pedigree
David Porubský, Harriet Dashnow, Thomas A. Sasani, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2024)
Open Access | Times Cited: 11
David Porubský, Harriet Dashnow, Thomas A. Sasani, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2024)
Open Access | Times Cited: 11
The clock-like accumulation of germline and somatic mutations can arise from the interplay of DNA damage and repair
Natanael Spisak, Marc de Manuel, William Milligan, et al.
PLoS Biology (2024) Vol. 22, Iss. 6, pp. e3002678-e3002678
Open Access | Times Cited: 8
Natanael Spisak, Marc de Manuel, William Milligan, et al.
PLoS Biology (2024) Vol. 22, Iss. 6, pp. e3002678-e3002678
Open Access | Times Cited: 8
Characterizing the Rates and Patterns of De Novo Germline Mutations in the Aye-Aye (Daubentonia madagascariensis)
Cyril J. Versoza, Erin E. Ehmke, Jeffrey D. Jensen, et al.
Molecular Biology and Evolution (2025) Vol. 42, Iss. 3
Open Access | Times Cited: 1
Cyril J. Versoza, Erin E. Ehmke, Jeffrey D. Jensen, et al.
Molecular Biology and Evolution (2025) Vol. 42, Iss. 3
Open Access | Times Cited: 1
Paternal age in rhesus macaques is positively associated with germline mutation accumulation but not with measures of offspring sociability
Richard J. Wang, Gregg W.C. Thomas, Muthuswamy Raveendran, et al.
Genome Research (2020) Vol. 30, Iss. 6, pp. 826-834
Open Access | Times Cited: 64
Richard J. Wang, Gregg W.C. Thomas, Muthuswamy Raveendran, et al.
Genome Research (2020) Vol. 30, Iss. 6, pp. 826-834
Open Access | Times Cited: 64