![Logo of OpenAlex.org Project OpenAlex Citations Logo](https://www.oahelper.org/wp-content/plugins/oahelper-citations/img/logo-openalex.jpg)
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Enhancing Pigment Phenotyping and Classification in Lettuce through the Integration of Reflectance Spectroscopy and AI Algorithms
Renan Falcioni, João Vitor Ferreira Gonçalves, Karym Mayara de Oliveira, et al.
Plants (2023) Vol. 12, Iss. 6, pp. 1333-1333
Open Access | Times Cited: 11
Renan Falcioni, João Vitor Ferreira Gonçalves, Karym Mayara de Oliveira, et al.
Plants (2023) Vol. 12, Iss. 6, pp. 1333-1333
Open Access | Times Cited: 11
Showing 11 citing articles:
An Integrated Multi-Omics and Artificial Intelligence Framework for Advance Plant Phenotyping in Horticulture
Danuta Cembrowska-Lech, Adrianna Krzemińska, Tymoteusz Miller, et al.
Biology (2023) Vol. 12, Iss. 10, pp. 1298-1298
Open Access | Times Cited: 24
Danuta Cembrowska-Lech, Adrianna Krzemińska, Tymoteusz Miller, et al.
Biology (2023) Vol. 12, Iss. 10, pp. 1298-1298
Open Access | Times Cited: 24
Real-Time AI-Assisted Push-Broom Hyperspectral System for Precision Agriculture
I. Neri, Silvia Caponi, Francesco Bonacci, et al.
Sensors (2024) Vol. 24, Iss. 2, pp. 344-344
Open Access | Times Cited: 8
I. Neri, Silvia Caponi, Francesco Bonacci, et al.
Sensors (2024) Vol. 24, Iss. 2, pp. 344-344
Open Access | Times Cited: 8
Where is tea grown in the world: A robust mapping framework for agroforestry crop with knowledge graph and sentinels images
Yufeng Peng, Bingwen Qiu, Zhenghong Tang, et al.
Remote Sensing of Environment (2024) Vol. 303, pp. 114016-114016
Closed Access | Times Cited: 7
Yufeng Peng, Bingwen Qiu, Zhenghong Tang, et al.
Remote Sensing of Environment (2024) Vol. 303, pp. 114016-114016
Closed Access | Times Cited: 7
Prediction of leaf nitrogen in sugarcane (Saccharum spp.) by Vis-NIR-SWIR spectroradiometry
Peterson Ricardo Fiorio, Carlos Augusto Alves Cardoso Silva, Rodnei Rizzo, et al.
Heliyon (2024) Vol. 10, Iss. 5, pp. e26819-e26819
Open Access | Times Cited: 7
Peterson Ricardo Fiorio, Carlos Augusto Alves Cardoso Silva, Rodnei Rizzo, et al.
Heliyon (2024) Vol. 10, Iss. 5, pp. e26819-e26819
Open Access | Times Cited: 7
Reflectance Spectroscopy for the Classification and Prediction of Pigments in Agronomic Crops
Renan Falcioni, Werner Camargos Antunes, José Alexandre Melo Demattê, et al.
Plants (2023) Vol. 12, Iss. 12, pp. 2347-2347
Open Access | Times Cited: 11
Renan Falcioni, Werner Camargos Antunes, José Alexandre Melo Demattê, et al.
Plants (2023) Vol. 12, Iss. 12, pp. 2347-2347
Open Access | Times Cited: 11
Non−Invasive Assessment, Classification, and Prediction of Biophysical Parameters Using Reflectance Hyperspectroscopy
Renan Falcioni, Gláucio Leboso Alemparte Abrantes dos Santos, Luís Guilherme Teixeira Crusiol, et al.
Plants (2023) Vol. 12, Iss. 13, pp. 2526-2526
Open Access | Times Cited: 7
Renan Falcioni, Gláucio Leboso Alemparte Abrantes dos Santos, Luís Guilherme Teixeira Crusiol, et al.
Plants (2023) Vol. 12, Iss. 13, pp. 2526-2526
Open Access | Times Cited: 7
Fluorescence and Hyperspectral Sensors for Nondestructive Analysis and Prediction of Biophysical Compounds in the Green and Purple Leaves of Tradescantia Plants
Renan Falcioni, Roney Berti de Oliveira, Marcelo Luiz Chicati, et al.
Sensors (2024) Vol. 24, Iss. 19, pp. 6490-6490
Open Access | Times Cited: 1
Renan Falcioni, Roney Berti de Oliveira, Marcelo Luiz Chicati, et al.
Sensors (2024) Vol. 24, Iss. 19, pp. 6490-6490
Open Access | Times Cited: 1
Non-destructive chlorophyll prediction by machine learning techniques using RGB-based vegetation indices in wheat
Biswabiplab Singh, Allimuthu Elangovan, Sudhir Kumar, et al.
Plant Physiology Reports (2024)
Closed Access | Times Cited: 1
Biswabiplab Singh, Allimuthu Elangovan, Sudhir Kumar, et al.
Plant Physiology Reports (2024)
Closed Access | Times Cited: 1
Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning
Miller Ruiz Sánchez, Carlos Augusto Alves Cardoso Silva, José Alexandre Melo Demattê, et al.
Grass and Forage Science (2024)
Closed Access
Miller Ruiz Sánchez, Carlos Augusto Alves Cardoso Silva, José Alexandre Melo Demattê, et al.
Grass and Forage Science (2024)
Closed Access
Breeding 4.0 vis-à-vis application of artificial intelligence (AI) in crop improvement: an overview
R. Ansari, Anindita Manna, Soham Hazra, et al.
New Zealand Journal of Crop and Horticultural Science (2024), pp. 1-43
Closed Access
R. Ansari, Anindita Manna, Soham Hazra, et al.
New Zealand Journal of Crop and Horticultural Science (2024), pp. 1-43
Closed Access
Inteligencia artificial en agricultura - Uso de algoritmos, drones y biosensores
Ricardo Hugo Lira-Saldívar, Francisco Marcelo Lara-Viveros
(2023)
Open Access
Ricardo Hugo Lira-Saldívar, Francisco Marcelo Lara-Viveros
(2023)
Open Access