![Logo of OpenAlex.org Project OpenAlex Citations Logo](https://www.oahelper.org/wp-content/plugins/oahelper-citations/img/logo-openalex.jpg)
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Machine learning modeling of family wide enzyme-substrate specificity screens
Samuel Goldman, Ria Das, Kevin Yang, et al.
PLoS Computational Biology (2022) Vol. 18, Iss. 2, pp. e1009853-e1009853
Open Access | Times Cited: 73
Samuel Goldman, Ria Das, Kevin Yang, et al.
PLoS Computational Biology (2022) Vol. 18, Iss. 2, pp. e1009853-e1009853
Open Access | Times Cited: 73
Showing 1-25 of 73 citing articles:
Combining chemistry and protein engineering for new-to-nature biocatalysis
David C. Miller, Soumitra V. Athavale, Frances H. Arnold
Nature Synthesis (2022) Vol. 1, Iss. 1, pp. 18-23
Open Access | Times Cited: 129
David C. Miller, Soumitra V. Athavale, Frances H. Arnold
Nature Synthesis (2022) Vol. 1, Iss. 1, pp. 18-23
Open Access | Times Cited: 129
A general model to predict small molecule substrates of enzymes based on machine and deep learning
Alexander Kroll, Sahasra Ranjan, Martin K. M. Engqvist, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 75
Alexander Kroll, Sahasra Ranjan, Martin K. M. Engqvist, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 75
Contrastive learning in protein language space predicts interactions between drugs and protein targets
Rohit Singh, Samuel Sledzieski, Bryan D. Bryson, et al.
Proceedings of the National Academy of Sciences (2023) Vol. 120, Iss. 24
Open Access | Times Cited: 71
Rohit Singh, Samuel Sledzieski, Bryan D. Bryson, et al.
Proceedings of the National Academy of Sciences (2023) Vol. 120, Iss. 24
Open Access | Times Cited: 71
Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning
Alexander Kroll, Yvan Rousset, Xiao-Pan Hu, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 70
Alexander Kroll, Yvan Rousset, Xiao-Pan Hu, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 70
Machine Learning-Guided Protein Engineering
Petr Kouba, Pavel Kohout, Faraneh Haddadi, et al.
ACS Catalysis (2023) Vol. 13, Iss. 21, pp. 13863-13895
Open Access | Times Cited: 65
Petr Kouba, Pavel Kohout, Faraneh Haddadi, et al.
ACS Catalysis (2023) Vol. 13, Iss. 21, pp. 13863-13895
Open Access | Times Cited: 65
Machine learning-enabled retrobiosynthesis of molecules
Tianhao Yu, Aashutosh Girish Boob, Michael Volk, et al.
Nature Catalysis (2023) Vol. 6, Iss. 2, pp. 137-151
Closed Access | Times Cited: 62
Tianhao Yu, Aashutosh Girish Boob, Michael Volk, et al.
Nature Catalysis (2023) Vol. 6, Iss. 2, pp. 137-151
Closed Access | Times Cited: 62
Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering
Jason Yang, Francesca-Zhoufan Li, Frances H. Arnold
ACS Central Science (2024) Vol. 10, Iss. 2, pp. 226-241
Open Access | Times Cited: 51
Jason Yang, Francesca-Zhoufan Li, Frances H. Arnold
ACS Central Science (2024) Vol. 10, Iss. 2, pp. 226-241
Open Access | Times Cited: 51
Feature Reuse and Scaling: Understanding Transfer Learning with Protein Language Models
Francesca-Zhoufan Li, Ava P. Amini, Yisong Yue, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2024)
Open Access | Times Cited: 17
Francesca-Zhoufan Li, Ava P. Amini, Yisong Yue, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2024)
Open Access | Times Cited: 17
Discovery of Toxin-Degrading Enzymes with Positive Unlabeled Deep Learning
Dachuan Zhang, Huadong Xing, Dongliang Liu, et al.
ACS Catalysis (2024) Vol. 14, Iss. 5, pp. 3336-3348
Closed Access | Times Cited: 13
Dachuan Zhang, Huadong Xing, Dongliang Liu, et al.
ACS Catalysis (2024) Vol. 14, Iss. 5, pp. 3336-3348
Closed Access | Times Cited: 13
Merging enzymatic and synthetic chemistry with computational synthesis planning
Itai Levin, Mengjie Liu, Christopher A. Voigt, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 37
Itai Levin, Mengjie Liu, Christopher A. Voigt, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 37
Dataset Design for Building Models of Chemical Reactivity
Priyanka Raghavan, Brittany C. Haas, Madeline E. Ruos, et al.
ACS Central Science (2023) Vol. 9, Iss. 12, pp. 2196-2204
Open Access | Times Cited: 31
Priyanka Raghavan, Brittany C. Haas, Madeline E. Ruos, et al.
ACS Central Science (2023) Vol. 9, Iss. 12, pp. 2196-2204
Open Access | Times Cited: 31
Accelerating Biocatalysis Discovery with Machine Learning: A Paradigm Shift in Enzyme Engineering, Discovery, and Design
Braun Markus, Gruber Christian C, Krassnigg Andreas, et al.
ACS Catalysis (2023) Vol. 13, Iss. 21, pp. 14454-14469
Open Access | Times Cited: 29
Braun Markus, Gruber Christian C, Krassnigg Andreas, et al.
ACS Catalysis (2023) Vol. 13, Iss. 21, pp. 14454-14469
Open Access | Times Cited: 29
Using Data Science for Mechanistic Insights and Selectivity Predictions in a Non-Natural Biocatalytic Reaction
Hanna D. Clements, Autumn R. Flynn, Bryce T. Nicholls, et al.
Journal of the American Chemical Society (2023) Vol. 145, Iss. 32, pp. 17656-17664
Open Access | Times Cited: 22
Hanna D. Clements, Autumn R. Flynn, Bryce T. Nicholls, et al.
Journal of the American Chemical Society (2023) Vol. 145, Iss. 32, pp. 17656-17664
Open Access | Times Cited: 22
Calibrated geometric deep learning improves kinase–drug binding predictions
Yunan Luo, Yang Liu, Jian Peng
Nature Machine Intelligence (2023) Vol. 5, Iss. 12, pp. 1390-1401
Open Access | Times Cited: 21
Yunan Luo, Yang Liu, Jian Peng
Nature Machine Intelligence (2023) Vol. 5, Iss. 12, pp. 1390-1401
Open Access | Times Cited: 21
A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids
Sierra M. Brooks, Celeste B. Marsan, Kevin B. Reed, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 20
Sierra M. Brooks, Celeste B. Marsan, Kevin B. Reed, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 20
A mini review on the applications of artificial intelligence (AI) in surface chemistry and catalysis
Faisal Al-Akayleh, Ahmed S.A. Ali Agha, Rami A. Abdel Rahem, et al.
Tenside Surfactants Detergents (2024) Vol. 61, Iss. 4, pp. 285-296
Closed Access | Times Cited: 7
Faisal Al-Akayleh, Ahmed S.A. Ali Agha, Rami A. Abdel Rahem, et al.
Tenside Surfactants Detergents (2024) Vol. 61, Iss. 4, pp. 285-296
Closed Access | Times Cited: 7
Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
Luis Fernando Salas Nuñez, Álvaro Barrera-Ocampo, Paola A. Caicedo, et al.
Metabolites (2024) Vol. 14, Iss. 3, pp. 154-154
Open Access | Times Cited: 6
Luis Fernando Salas Nuñez, Álvaro Barrera-Ocampo, Paola A. Caicedo, et al.
Metabolites (2024) Vol. 14, Iss. 3, pp. 154-154
Open Access | Times Cited: 6
Improving Generalizability of Drug-Target Binding Prediction by Pre-trained Multi-view Molecular Representations
Xike Ouyang, Y. X. Feng, Chen Cui, et al.
Bioinformatics (2025)
Open Access
Xike Ouyang, Y. X. Feng, Chen Cui, et al.
Bioinformatics (2025)
Open Access
Learning a CoNCISE language for small-molecule binding
Mert Erden, Kapil Devkota, Lia Varghese, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2025)
Open Access
Mert Erden, Kapil Devkota, Lia Varghese, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2025)
Open Access
CPI-Pred: A deep learning framework for predicting functional parameters of compound-protein interactions
Zhiqing Xu, Rana Ahmed Barghout, Jinghao Wu, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2025)
Open Access
Zhiqing Xu, Rana Ahmed Barghout, Jinghao Wu, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2025)
Open Access
Deep learning methods for proteome-scale interaction prediction
Min Su Yoon, Byeong‐Soo Bae, Kun Hee Kim, et al.
Current Opinion in Structural Biology (2025) Vol. 90, pp. 102981-102981
Closed Access
Min Su Yoon, Byeong‐Soo Bae, Kun Hee Kim, et al.
Current Opinion in Structural Biology (2025) Vol. 90, pp. 102981-102981
Closed Access
Data‐Driven Protein Engineering for Improving Catalytic Activity and Selectivity
Yu‐Fei Ao, Mark Dörr, Marian J. Menke, et al.
ChemBioChem (2023) Vol. 25, Iss. 3
Open Access | Times Cited: 19
Yu‐Fei Ao, Mark Dörr, Marian J. Menke, et al.
ChemBioChem (2023) Vol. 25, Iss. 3
Open Access | Times Cited: 19
Machine Learning: A Suitable Method for Biocatalysis
Pedro Sampaio, Pedro Fernandes
Catalysts (2023) Vol. 13, Iss. 6, pp. 961-961
Open Access | Times Cited: 15
Pedro Sampaio, Pedro Fernandes
Catalysts (2023) Vol. 13, Iss. 6, pp. 961-961
Open Access | Times Cited: 15
Development of an efficient yeast platform for cannabigerolic acid biosynthesis
Yunfeng Zhang, Jiulong Guo, PeiZhen Gao, et al.
Metabolic Engineering (2023) Vol. 80, pp. 232-240
Closed Access | Times Cited: 15
Yunfeng Zhang, Jiulong Guo, PeiZhen Gao, et al.
Metabolic Engineering (2023) Vol. 80, pp. 232-240
Closed Access | Times Cited: 15
RetroBioCat Database: A Platform for Collaborative Curation and Automated Meta-Analysis of Biocatalysis Data
William Finnigan, Max Lubberink, Lorna J. Hepworth, et al.
ACS Catalysis (2023) Vol. 13, Iss. 17, pp. 11771-11780
Open Access | Times Cited: 14
William Finnigan, Max Lubberink, Lorna J. Hepworth, et al.
ACS Catalysis (2023) Vol. 13, Iss. 17, pp. 11771-11780
Open Access | Times Cited: 14