![Logo of OpenAlex.org Project OpenAlex Citations Logo](https://www.oahelper.org/wp-content/plugins/oahelper-citations/img/logo-openalex.jpg)
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
A systematic evaluation of single-cell RNA-sequencing imputation methods
Wenpin Hou, Zhicheng Ji, Hongkai Ji, et al.
Genome biology (2020) Vol. 21, Iss. 1
Open Access | Times Cited: 233
Wenpin Hou, Zhicheng Ji, Hongkai Ji, et al.
Genome biology (2020) Vol. 21, Iss. 1
Open Access | Times Cited: 233
Showing 1-25 of 233 citing articles:
Statistics or biology: the zero-inflation controversy about scRNA-seq data
Ruochen Jiang, Tianyi Sun, Dongyuan Song, et al.
Genome biology (2022) Vol. 23, Iss. 1
Open Access | Times Cited: 425
Ruochen Jiang, Tianyi Sun, Dongyuan Song, et al.
Genome biology (2022) Vol. 23, Iss. 1
Open Access | Times Cited: 425
RNA sequencing: new technologies and applications in cancer research
Mingye Hong, Shuang Tao, Ling Zhang, et al.
Journal of Hematology & Oncology (2020) Vol. 13, Iss. 1
Open Access | Times Cited: 389
Mingye Hong, Shuang Tao, Ling Zhang, et al.
Journal of Hematology & Oncology (2020) Vol. 13, Iss. 1
Open Access | Times Cited: 389
Alignment and integration of spatial transcriptomics data
Ron Zeira, Max Land, Alexander Strzalkowski, et al.
Nature Methods (2022) Vol. 19, Iss. 5, pp. 567-575
Open Access | Times Cited: 145
Ron Zeira, Max Land, Alexander Strzalkowski, et al.
Nature Methods (2022) Vol. 19, Iss. 5, pp. 567-575
Open Access | Times Cited: 145
Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities
Brendan Miller, Dhananjay Bambah-Mukku, Catherine Dulac, et al.
Genome Research (2021) Vol. 31, Iss. 10, pp. 1843-1855
Open Access | Times Cited: 117
Brendan Miller, Dhananjay Bambah-Mukku, Catherine Dulac, et al.
Genome Research (2021) Vol. 31, Iss. 10, pp. 1843-1855
Open Access | Times Cited: 117
Applications of single-cell and bulk RNA sequencing in onco-immunology
M. Kuksin, Daphné Morel, Marine Aglave, et al.
European Journal of Cancer (2021) Vol. 149, pp. 193-210
Open Access | Times Cited: 102
M. Kuksin, Daphné Morel, Marine Aglave, et al.
European Journal of Cancer (2021) Vol. 149, pp. 193-210
Open Access | Times Cited: 102
scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional neural networks
Han Yuan, David R. Kelley
Nature Methods (2022) Vol. 19, Iss. 9, pp. 1088-1096
Open Access | Times Cited: 75
Han Yuan, David R. Kelley
Nature Methods (2022) Vol. 19, Iss. 9, pp. 1088-1096
Open Access | Times Cited: 75
Deep learning applications in single-cell genomics and transcriptomics data analysis
Nafiseh Erfanian, A. Ali Heydari, Adib Miraki Feriz, et al.
Biomedicine & Pharmacotherapy (2023) Vol. 165, pp. 115077-115077
Open Access | Times Cited: 47
Nafiseh Erfanian, A. Ali Heydari, Adib Miraki Feriz, et al.
Biomedicine & Pharmacotherapy (2023) Vol. 165, pp. 115077-115077
Open Access | Times Cited: 47
pipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools
Pierre‐Luc Germain, Anthony Sonrel, Mark D. Robinson
Genome biology (2020) Vol. 21, Iss. 1
Open Access | Times Cited: 96
Pierre‐Luc Germain, Anthony Sonrel, Mark D. Robinson
Genome biology (2020) Vol. 21, Iss. 1
Open Access | Times Cited: 96
A Review of Integrative Imputation for Multi-Omics Datasets
Meng Song, Jonathan Greenbaum, Joseph Luttrell, et al.
Frontiers in Genetics (2020) Vol. 11
Open Access | Times Cited: 85
Meng Song, Jonathan Greenbaum, Joseph Luttrell, et al.
Frontiers in Genetics (2020) Vol. 11
Open Access | Times Cited: 85
Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
Zhijian Li, Christoph Kuppe, Susanne Ziegler, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 83
Zhijian Li, Christoph Kuppe, Susanne Ziegler, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 83
From bench to bedside: Single-cell analysis for cancer immunotherapy
Emily F. Davis-Marcisak, Atul Deshpande, Genevieve Stein-O’Brien, et al.
Cancer Cell (2021) Vol. 39, Iss. 8, pp. 1062-1080
Open Access | Times Cited: 79
Emily F. Davis-Marcisak, Atul Deshpande, Genevieve Stein-O’Brien, et al.
Cancer Cell (2021) Vol. 39, Iss. 8, pp. 1062-1080
Open Access | Times Cited: 79
Computational Approaches and Challenges in Spatial Transcriptomics
Shuangsang Fang, Bichao Chen, Yong Zhang, et al.
Genomics Proteomics & Bioinformatics (2022) Vol. 21, Iss. 1, pp. 24-47
Open Access | Times Cited: 63
Shuangsang Fang, Bichao Chen, Yong Zhang, et al.
Genomics Proteomics & Bioinformatics (2022) Vol. 21, Iss. 1, pp. 24-47
Open Access | Times Cited: 63
Updates on Immunotherapy and Immune Landscape in Renal Clear Cell Carcinoma
Myung‐Chul Kim, Jin Zeng, Ryan Kolb, et al.
Cancers (2021) Vol. 13, Iss. 22, pp. 5856-5856
Open Access | Times Cited: 57
Myung‐Chul Kim, Jin Zeng, Ryan Kolb, et al.
Cancers (2021) Vol. 13, Iss. 22, pp. 5856-5856
Open Access | Times Cited: 57
Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications
Min‐Ying Su, Tao Pan, Qiu-Zhen Chen, et al.
Military Medical Research (2022) Vol. 9, Iss. 1
Open Access | Times Cited: 52
Min‐Ying Su, Tao Pan, Qiu-Zhen Chen, et al.
Military Medical Research (2022) Vol. 9, Iss. 1
Open Access | Times Cited: 52
Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets
Ábel Vértesy, Oliver L. Eichmüller, Julia Naas, et al.
The EMBO Journal (2022) Vol. 41, Iss. 17
Open Access | Times Cited: 39
Ábel Vértesy, Oliver L. Eichmüller, Julia Naas, et al.
The EMBO Journal (2022) Vol. 41, Iss. 17
Open Access | Times Cited: 39
Single-cell profiling of transcriptome and histone modifications with EpiDamID
Franka J. Rang, Kim L. de Luca, Sandra S. de Vries, et al.
Molecular Cell (2022) Vol. 82, Iss. 10, pp. 1956-1970.e14
Open Access | Times Cited: 38
Franka J. Rang, Kim L. de Luca, Sandra S. de Vries, et al.
Molecular Cell (2022) Vol. 82, Iss. 10, pp. 1956-1970.e14
Open Access | Times Cited: 38
IDEAS: individual level differential expression analysis for single-cell RNA-seq data
Mengqi Zhang, Si Liu, Zhen Miao, et al.
Genome biology (2022) Vol. 23, Iss. 1
Open Access | Times Cited: 37
Mengqi Zhang, Si Liu, Zhen Miao, et al.
Genome biology (2022) Vol. 23, Iss. 1
Open Access | Times Cited: 37
Entropy sorting of single-cell RNA sequencing data reveals the inner cell mass in the human pre-implantation embryo
Arthur Radley, Elena Corujo-Simón, Jennifer Nichols, et al.
Stem Cell Reports (2022) Vol. 18, Iss. 1, pp. 47-63
Open Access | Times Cited: 37
Arthur Radley, Elena Corujo-Simón, Jennifer Nichols, et al.
Stem Cell Reports (2022) Vol. 18, Iss. 1, pp. 47-63
Open Access | Times Cited: 37
Metacells untangle large and complex single-cell transcriptome networks
Mariia Bilous, Loc Tran, Chiara Cianciaruso, et al.
BMC Bioinformatics (2022) Vol. 23, Iss. 1
Open Access | Times Cited: 35
Mariia Bilous, Loc Tran, Chiara Cianciaruso, et al.
BMC Bioinformatics (2022) Vol. 23, Iss. 1
Open Access | Times Cited: 35
Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases
Raquel Cuevas‐Díaz Durán, Juan Carlos González-Orozco, Iván Velasco, et al.
Frontiers in Cell and Developmental Biology (2022) Vol. 10
Open Access | Times Cited: 35
Raquel Cuevas‐Díaz Durán, Juan Carlos González-Orozco, Iván Velasco, et al.
Frontiers in Cell and Developmental Biology (2022) Vol. 10
Open Access | Times Cited: 35
Identifying strengths and weaknesses of methods for computational network inference from single-cell RNA-seq data
Sunnie Grace McCalla, Alireza Fotuhi Siahpirani, Jiaxin Li, et al.
G3 Genes Genomes Genetics (2023) Vol. 13, Iss. 3
Open Access | Times Cited: 28
Sunnie Grace McCalla, Alireza Fotuhi Siahpirani, Jiaxin Li, et al.
G3 Genes Genomes Genetics (2023) Vol. 13, Iss. 3
Open Access | Times Cited: 28
Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
Daniel Kim, Andy Tran, Hani Jieun Kim, et al.
npj Systems Biology and Applications (2023) Vol. 9, Iss. 1
Open Access | Times Cited: 28
Daniel Kim, Andy Tran, Hani Jieun Kim, et al.
npj Systems Biology and Applications (2023) Vol. 9, Iss. 1
Open Access | Times Cited: 28
Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references
Allan-Hermann Pool, Helen Poldsam, Sisi Chen, et al.
Nature Methods (2023) Vol. 20, Iss. 10, pp. 1506-1515
Closed Access | Times Cited: 26
Allan-Hermann Pool, Helen Poldsam, Sisi Chen, et al.
Nature Methods (2023) Vol. 20, Iss. 10, pp. 1506-1515
Closed Access | Times Cited: 26
scGCL: an imputation method for scRNA-seq data based on graph contrastive learning
Zehao Xiong, Jiawei Luo, Wanwan Shi, et al.
Bioinformatics (2023) Vol. 39, Iss. 3
Open Access | Times Cited: 20
Zehao Xiong, Jiawei Luo, Wanwan Shi, et al.
Bioinformatics (2023) Vol. 39, Iss. 3
Open Access | Times Cited: 20