
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Foxo1 deletion promotes the growth of new lymphatic valves
Joshua P. Scallan, Luz A. Knauer, Huayan Hou, et al.
Journal of Clinical Investigation (2021) Vol. 131, Iss. 14
Open Access | Times Cited: 43
Joshua P. Scallan, Luz A. Knauer, Huayan Hou, et al.
Journal of Clinical Investigation (2021) Vol. 131, Iss. 14
Open Access | Times Cited: 43
Showing 1-25 of 43 citing articles:
Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway
Ming Xiang, Tingting Liu, Cheng Tian, et al.
Pharmacological Research (2022) Vol. 177, pp. 106092-106092
Open Access | Times Cited: 55
Ming Xiang, Tingting Liu, Cheng Tian, et al.
Pharmacological Research (2022) Vol. 177, pp. 106092-106092
Open Access | Times Cited: 55
Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response
Fabian Ruperti, Isabelle Becher, Anniek Stokkermans, et al.
Current Biology (2024) Vol. 34, Iss. 2, pp. 361-375.e9
Open Access | Times Cited: 10
Fabian Ruperti, Isabelle Becher, Anniek Stokkermans, et al.
Current Biology (2024) Vol. 34, Iss. 2, pp. 361-375.e9
Open Access | Times Cited: 10
Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor
Rafael S. Czepielewski, Emma Erlich, Emily J. Onufer, et al.
Immunity (2021) Vol. 54, Iss. 12, pp. 2795-2811.e9
Open Access | Times Cited: 48
Rafael S. Czepielewski, Emma Erlich, Emily J. Onufer, et al.
Immunity (2021) Vol. 54, Iss. 12, pp. 2795-2811.e9
Open Access | Times Cited: 48
The Vicious Circle of Stasis, Inflammation, and Fibrosis in Lymphedema
Stav Brown, Joseph H. Dayan, Raghu P. Kataru, et al.
Plastic & Reconstructive Surgery (2022) Vol. 151, Iss. 2, pp. 330e-341e
Closed Access | Times Cited: 35
Stav Brown, Joseph H. Dayan, Raghu P. Kataru, et al.
Plastic & Reconstructive Surgery (2022) Vol. 151, Iss. 2, pp. 330e-341e
Closed Access | Times Cited: 35
The emerging importance of lymphatics in health and disease: an NIH workshop report
Babak J. Mehrara, Andrea J. Radtke, Gwendalyn J. Randolph, et al.
Journal of Clinical Investigation (2023) Vol. 133, Iss. 17
Open Access | Times Cited: 19
Babak J. Mehrara, Andrea J. Radtke, Gwendalyn J. Randolph, et al.
Journal of Clinical Investigation (2023) Vol. 133, Iss. 17
Open Access | Times Cited: 19
Central conducting lymphatic anomaly: from bench to bedside
Luciana Daniela Garlisi Torales, Benjamin A Sempowski, Georgia L. Krikorian, et al.
Journal of Clinical Investigation (2024) Vol. 134, Iss. 8
Open Access | Times Cited: 6
Luciana Daniela Garlisi Torales, Benjamin A Sempowski, Georgia L. Krikorian, et al.
Journal of Clinical Investigation (2024) Vol. 134, Iss. 8
Open Access | Times Cited: 6
Single-cell Expression Atlas Reveals Cell Heterogeneity in the Creeping Fat of Crohn’s Disease
Weigang Shu, Yongheng Wang, Chuanding Li, et al.
Inflammatory Bowel Diseases (2023) Vol. 29, Iss. 6, pp. 850-865
Closed Access | Times Cited: 15
Weigang Shu, Yongheng Wang, Chuanding Li, et al.
Inflammatory Bowel Diseases (2023) Vol. 29, Iss. 6, pp. 850-865
Closed Access | Times Cited: 15
Current Status of Lymphangiogenesis: Molecular Mechanism, Immune Tolerance, and Application Prospect
Hongyang Deng, Jiaxing Zhang, Fahong Wu, et al.
Cancers (2023) Vol. 15, Iss. 4, pp. 1169-1169
Open Access | Times Cited: 13
Hongyang Deng, Jiaxing Zhang, Fahong Wu, et al.
Cancers (2023) Vol. 15, Iss. 4, pp. 1169-1169
Open Access | Times Cited: 13
VEGFR3 is required for button junction formation in lymphatic vessels
Melanie Jannaway, Drishya Iyer, Diandra M. Mastrogiacomo, et al.
Cell Reports (2023) Vol. 42, Iss. 7, pp. 112777-112777
Open Access | Times Cited: 13
Melanie Jannaway, Drishya Iyer, Diandra M. Mastrogiacomo, et al.
Cell Reports (2023) Vol. 42, Iss. 7, pp. 112777-112777
Open Access | Times Cited: 13
The mechanosensory channel PIEZO1 functions upstream of angiopoietin/TIE/FOXO1 signaling in lymphatic development
Jing Du, Pan Liu, Yalu Zhou, et al.
Journal of Clinical Investigation (2024) Vol. 134, Iss. 10
Open Access | Times Cited: 5
Jing Du, Pan Liu, Yalu Zhou, et al.
Journal of Clinical Investigation (2024) Vol. 134, Iss. 10
Open Access | Times Cited: 5
Lymphatic Collecting Vessel: New Perspectives on Mechanisms of Contractile Regulation and Potential Lymphatic Contractile Pathways to Target in Obesity and Metabolic Diseases
Yang Lee, Scott D. Zawieja, Muthuchamy Maruthupandy
Frontiers in Pharmacology (2022) Vol. 13
Open Access | Times Cited: 18
Yang Lee, Scott D. Zawieja, Muthuchamy Maruthupandy
Frontiers in Pharmacology (2022) Vol. 13
Open Access | Times Cited: 18
Multiple aspects of lymphatic dysfunction in an ApoE−/− mouse model of hypercholesterolemia
Michael J. Davis, Joshua P. Scallan, Jorge A. Castorena‐Gonzalez, et al.
Frontiers in Physiology (2023) Vol. 13
Open Access | Times Cited: 10
Michael J. Davis, Joshua P. Scallan, Jorge A. Castorena‐Gonzalez, et al.
Frontiers in Physiology (2023) Vol. 13
Open Access | Times Cited: 10
Lymphatic Contractile Dysfunction in Mouse Models of Cantú Syndrome with Katp Channel Gain-Of-Function
Michael J. Davis, Jorge A. Castorena‐Gonzalez, Hae Jin Kim, et al.
Function (2023) Vol. 4, Iss. 3
Open Access | Times Cited: 10
Michael J. Davis, Jorge A. Castorena‐Gonzalez, Hae Jin Kim, et al.
Function (2023) Vol. 4, Iss. 3
Open Access | Times Cited: 10
Profibrotic VEGFR3-Dependent Lymphatic Vessel Growth in Autoimmune Valvular Carditis
Victoria Osinski, Amritha Yellamilli, Maria Firulyova, et al.
Arteriosclerosis Thrombosis and Vascular Biology (2024) Vol. 44, Iss. 4, pp. 807-821
Open Access | Times Cited: 3
Victoria Osinski, Amritha Yellamilli, Maria Firulyova, et al.
Arteriosclerosis Thrombosis and Vascular Biology (2024) Vol. 44, Iss. 4, pp. 807-821
Open Access | Times Cited: 3
Developmental progression of lymphatic valve morphology and function
Michael J. Davis, Scott D. Zawieja, Ying Yang
Frontiers in Cell and Developmental Biology (2024) Vol. 12
Open Access | Times Cited: 3
Michael J. Davis, Scott D. Zawieja, Ying Yang
Frontiers in Cell and Developmental Biology (2024) Vol. 12
Open Access | Times Cited: 3
Multiple cis-regulatory elements control prox1a expression in distinct lymphatic vascular beds
Virginia Panara, Hujun Yu, Di Peng, et al.
Development (2024) Vol. 151, Iss. 9
Open Access | Times Cited: 3
Virginia Panara, Hujun Yu, Di Peng, et al.
Development (2024) Vol. 151, Iss. 9
Open Access | Times Cited: 3
Mechanosensitive mTORC1 signaling maintains lymphatic valves
Cansaran Saygili Demir, Amélie Sabine, Muyun Gong, et al.
The Journal of Cell Biology (2023) Vol. 222, Iss. 6
Open Access | Times Cited: 8
Cansaran Saygili Demir, Amélie Sabine, Muyun Gong, et al.
The Journal of Cell Biology (2023) Vol. 222, Iss. 6
Open Access | Times Cited: 8
Pharmacological inhibition of FOXO1 promotes lymphatic valve growth in a congenital lymphedema mouse model
Ololade Ogunsina, Richa Banerjee, Luz A. Knauer, et al.
Frontiers in Cell and Developmental Biology (2023) Vol. 10
Open Access | Times Cited: 7
Ololade Ogunsina, Richa Banerjee, Luz A. Knauer, et al.
Frontiers in Cell and Developmental Biology (2023) Vol. 10
Open Access | Times Cited: 7
Macrophage-induced integrin signaling promotes Schlemm’s canal formation to prevent intraocular hypertension and glaucomatous optic neuropathy
Xinyu Gu, Xun Chen, Xuan Zhang, et al.
Cell Reports (2024) Vol. 43, Iss. 2, pp. 113799-113799
Open Access | Times Cited: 2
Xinyu Gu, Xun Chen, Xuan Zhang, et al.
Cell Reports (2024) Vol. 43, Iss. 2, pp. 113799-113799
Open Access | Times Cited: 2
Connexin45 (GJC1) is expressed in mouse lymphatic endothelium and required for normal lymphatic valve function
Michael J. Davis, Jorge A. Castorena‐Gonzalez, Min Li, et al.
JCI Insight (2024)
Open Access | Times Cited: 2
Michael J. Davis, Jorge A. Castorena‐Gonzalez, Min Li, et al.
JCI Insight (2024)
Open Access | Times Cited: 2
Zmiz1 is a novel regulator of lymphatic endothelial cell gene expression and function
K. C. Rajan, Nehal Patel, Anoushka Shenoy, et al.
PLoS ONE (2024) Vol. 19, Iss. 5, pp. e0302926-e0302926
Open Access | Times Cited: 2
K. C. Rajan, Nehal Patel, Anoushka Shenoy, et al.
PLoS ONE (2024) Vol. 19, Iss. 5, pp. e0302926-e0302926
Open Access | Times Cited: 2
FOXO1 represses lymphatic valve formation and maintenance via PRDM1
Kenta Niimi, Jun Nakae, Shinobu Inagaki, et al.
Cell Reports (2021) Vol. 37, Iss. 9, pp. 110048-110048
Closed Access | Times Cited: 13
Kenta Niimi, Jun Nakae, Shinobu Inagaki, et al.
Cell Reports (2021) Vol. 37, Iss. 9, pp. 110048-110048
Closed Access | Times Cited: 13
Mechanical forces in lymphatic vessel development: Focus on transcriptional regulation
Naoto Ujiie, Tsutomu Kume
Frontiers in Physiology (2022) Vol. 13
Open Access | Times Cited: 9
Naoto Ujiie, Tsutomu Kume
Frontiers in Physiology (2022) Vol. 13
Open Access | Times Cited: 9
Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response
Fabian Ruperti, Isabelle Becher, Anniek Stokkermans, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2023)
Open Access | Times Cited: 5
Fabian Ruperti, Isabelle Becher, Anniek Stokkermans, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2023)
Open Access | Times Cited: 5
Temporospatial inhibition of Erk signaling is required for lymphatic valve formation
Yaping Meng, Tong Lv, Junfeng Zhang, et al.
Signal Transduction and Targeted Therapy (2023) Vol. 8, Iss. 1
Open Access | Times Cited: 5
Yaping Meng, Tong Lv, Junfeng Zhang, et al.
Signal Transduction and Targeted Therapy (2023) Vol. 8, Iss. 1
Open Access | Times Cited: 5