
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
CO 2 electrolysis to multicarbon products at activities greater than 1 A cm −2
F. Pelayo Garcı́a de Arquer, Cao‐Thang Dinh, Adnan Ozden, et al.
Science (2020) Vol. 367, Iss. 6478, pp. 661-666
Closed Access | Times Cited: 1144
F. Pelayo Garcı́a de Arquer, Cao‐Thang Dinh, Adnan Ozden, et al.
Science (2020) Vol. 367, Iss. 6478, pp. 661-666
Closed Access | Times Cited: 1144
Showing 1-25 of 1144 citing articles:
Technologies and perspectives for achieving carbon neutrality
Fang Wang, Jean Damascene Harindintwali, Zhizhang Yuan, et al.
The Innovation (2021) Vol. 2, Iss. 4, pp. 100180-100180
Open Access | Times Cited: 969
Fang Wang, Jean Damascene Harindintwali, Zhizhang Yuan, et al.
The Innovation (2021) Vol. 2, Iss. 4, pp. 100180-100180
Open Access | Times Cited: 969
Electrocatalysis for CO2conversion: from fundamentals to value-added products
Genxiang Wang, Junxiang Chen, Yichun Ding, et al.
Chemical Society Reviews (2021) Vol. 50, Iss. 8, pp. 4993-5061
Closed Access | Times Cited: 891
Genxiang Wang, Junxiang Chen, Yichun Ding, et al.
Chemical Society Reviews (2021) Vol. 50, Iss. 8, pp. 4993-5061
Closed Access | Times Cited: 891
CO 2 electrolysis to multicarbon products in strong acid
Jianan Erick Huang, Fengwang Li, Adnan Ozden, et al.
Science (2021) Vol. 372, Iss. 6546, pp. 1074-1078
Closed Access | Times Cited: 864
Jianan Erick Huang, Fengwang Li, Adnan Ozden, et al.
Science (2021) Vol. 372, Iss. 6546, pp. 1074-1078
Closed Access | Times Cited: 864
Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design
Feng-Yang Chen, Zhenyu Wu, Zachary Adler, et al.
Joule (2021) Vol. 5, Iss. 7, pp. 1704-1731
Open Access | Times Cited: 761
Feng-Yang Chen, Zhenyu Wu, Zachary Adler, et al.
Joule (2021) Vol. 5, Iss. 7, pp. 1704-1731
Open Access | Times Cited: 761
Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction
Andreas Wagner, Constantin D. Sahm, Erwin Reisner
Nature Catalysis (2020) Vol. 3, Iss. 10, pp. 775-786
Closed Access | Times Cited: 564
Andreas Wagner, Constantin D. Sahm, Erwin Reisner
Nature Catalysis (2020) Vol. 3, Iss. 10, pp. 775-786
Closed Access | Times Cited: 564
Recent Advances in Design of Electrocatalysts for High‐Current‐Density Water Splitting
Yuting Luo, Zhiyuan Zhang, Manish Chhowalla, et al.
Advanced Materials (2021) Vol. 34, Iss. 16
Open Access | Times Cited: 558
Yuting Luo, Zhiyuan Zhang, Manish Chhowalla, et al.
Advanced Materials (2021) Vol. 34, Iss. 16
Open Access | Times Cited: 558
Electro-organic synthesis – a 21stcentury technique
Dennis Pollok, Siegfried R. Waldvogel
Chemical Science (2020) Vol. 11, Iss. 46, pp. 12386-12400
Open Access | Times Cited: 519
Dennis Pollok, Siegfried R. Waldvogel
Chemical Science (2020) Vol. 11, Iss. 46, pp. 12386-12400
Open Access | Times Cited: 519
Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals
Cheng Tang, Yao Zheng, Mietek Jaroniec, et al.
Angewandte Chemie International Edition (2021) Vol. 60, Iss. 36, pp. 19572-19590
Open Access | Times Cited: 514
Cheng Tang, Yao Zheng, Mietek Jaroniec, et al.
Angewandte Chemie International Edition (2021) Vol. 60, Iss. 36, pp. 19572-19590
Open Access | Times Cited: 514
The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem
Joshua A. Rabinowitz, Matthew W. Kanan
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 508
Joshua A. Rabinowitz, Matthew W. Kanan
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 508
Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium
Jun Gu, Shuo Liu, Weiyan Ni, et al.
Nature Catalysis (2022) Vol. 5, Iss. 4, pp. 268-276
Open Access | Times Cited: 504
Jun Gu, Shuo Liu, Weiyan Ni, et al.
Nature Catalysis (2022) Vol. 5, Iss. 4, pp. 268-276
Open Access | Times Cited: 504
Coupling electrochemical CO2 conversion with CO2 capture
Ian Sullivan, Andrey Goryachev, Ibadillah A. Digdaya, et al.
Nature Catalysis (2021) Vol. 4, Iss. 11, pp. 952-958
Closed Access | Times Cited: 485
Ian Sullivan, Andrey Goryachev, Ibadillah A. Digdaya, et al.
Nature Catalysis (2021) Vol. 4, Iss. 11, pp. 952-958
Closed Access | Times Cited: 485
Techno-economic assessment of low-temperature carbon dioxide electrolysis
Haeun Shin, Kentaro U. Hansen, Feng Jiao
Nature Sustainability (2021) Vol. 4, Iss. 10, pp. 911-919
Closed Access | Times Cited: 464
Haeun Shin, Kentaro U. Hansen, Feng Jiao
Nature Sustainability (2021) Vol. 4, Iss. 10, pp. 911-919
Closed Access | Times Cited: 464
Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying
Tingting Zheng, Chunxiao Liu, Chenxi Guo, et al.
Nature Nanotechnology (2021) Vol. 16, Iss. 12, pp. 1386-1393
Closed Access | Times Cited: 459
Tingting Zheng, Chunxiao Liu, Chenxi Guo, et al.
Nature Nanotechnology (2021) Vol. 16, Iss. 12, pp. 1386-1393
Closed Access | Times Cited: 459
Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment
Zhuo Xing, Lin Hu, Donald S. Ripatti, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 452
Zhuo Xing, Lin Hu, Donald S. Ripatti, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 452
Gas diffusion electrodes and membranes for CO2 reduction electrolysers
Eric W. Lees, Benjamin A. W. Mowbray, Fraser G. L. Parlane, et al.
Nature Reviews Materials (2021) Vol. 7, Iss. 1, pp. 55-64
Closed Access | Times Cited: 436
Eric W. Lees, Benjamin A. W. Mowbray, Fraser G. L. Parlane, et al.
Nature Reviews Materials (2021) Vol. 7, Iss. 1, pp. 55-64
Closed Access | Times Cited: 436
Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor
Lei Fan, Chuan Xia, Peng Zhu, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 432
Lei Fan, Chuan Xia, Peng Zhu, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 432
Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers
David Wakerley, Sarah Lamaison, Joshua Wicks, et al.
Nature Energy (2022) Vol. 7, Iss. 2, pp. 130-143
Open Access | Times Cited: 423
David Wakerley, Sarah Lamaison, Joshua Wicks, et al.
Nature Energy (2022) Vol. 7, Iss. 2, pp. 130-143
Open Access | Times Cited: 423
Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives
Yongwen Ren, Chang Yu, Xinyi Tan, et al.
Energy & Environmental Science (2021) Vol. 14, Iss. 3, pp. 1176-1193
Closed Access | Times Cited: 420
Yongwen Ren, Chang Yu, Xinyi Tan, et al.
Energy & Environmental Science (2021) Vol. 14, Iss. 3, pp. 1176-1193
Closed Access | Times Cited: 420
An industrial perspective on catalysts for low-temperature CO2 electrolysis
Richard I. Masel, Zengcai Liu, Hongzhou Yang, et al.
Nature Nanotechnology (2021) Vol. 16, Iss. 2, pp. 118-128
Open Access | Times Cited: 413
Richard I. Masel, Zengcai Liu, Hongzhou Yang, et al.
Nature Nanotechnology (2021) Vol. 16, Iss. 2, pp. 118-128
Open Access | Times Cited: 413
Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces
Run Shi, Jiahao Guo, Xuerui Zhang, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 404
Run Shi, Jiahao Guo, Xuerui Zhang, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 404
High carbon utilization in CO2 reduction to multi-carbon products in acidic media
Yi Xie, Pengfei Ou, Xue Wang, et al.
Nature Catalysis (2022) Vol. 5, Iss. 6, pp. 564-570
Closed Access | Times Cited: 389
Yi Xie, Pengfei Ou, Xue Wang, et al.
Nature Catalysis (2022) Vol. 5, Iss. 6, pp. 564-570
Closed Access | Times Cited: 389
Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis
Hongyu Jing, Peng Zhu, Xiaobo Zheng, et al.
Advanced Powder Materials (2021) Vol. 1, Iss. 1, pp. 100013-100013
Open Access | Times Cited: 375
Hongyu Jing, Peng Zhu, Xiaobo Zheng, et al.
Advanced Powder Materials (2021) Vol. 1, Iss. 1, pp. 100013-100013
Open Access | Times Cited: 375
Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review
Hesamoddin Rabiee, Lei Ge, Xueqin Zhang, et al.
Energy & Environmental Science (2021) Vol. 14, Iss. 4, pp. 1959-2008
Closed Access | Times Cited: 368
Hesamoddin Rabiee, Lei Ge, Xueqin Zhang, et al.
Energy & Environmental Science (2021) Vol. 14, Iss. 4, pp. 1959-2008
Closed Access | Times Cited: 368
Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies
Yao Yang, Cheyenne R. Peltier, Rui Zeng, et al.
Chemical Reviews (2022) Vol. 122, Iss. 6, pp. 6117-6321
Open Access | Times Cited: 358
Yao Yang, Cheyenne R. Peltier, Rui Zeng, et al.
Chemical Reviews (2022) Vol. 122, Iss. 6, pp. 6117-6321
Open Access | Times Cited: 358
Catalyst–electrolyte interface chemistry for electrochemical CO2 reduction
Young Jin, Chan Woo Lee, Si Young Lee, et al.
Chemical Society Reviews (2020) Vol. 49, Iss. 18, pp. 6632-6665
Closed Access | Times Cited: 340
Young Jin, Chan Woo Lee, Si Young Lee, et al.
Chemical Society Reviews (2020) Vol. 49, Iss. 18, pp. 6632-6665
Closed Access | Times Cited: 340