OpenAlex Citation Counts

OpenAlex Citations Logo

OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!

If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.

Requested Article:

No evidence for a modulating effect of continuous transcutaneous auricular vagus nerve stimulation on markers of noradrenergic activity
Martina D’Agostini, Andreas M. Burger, Gustavo Villca Ponce, et al.
Psychophysiology (2022) Vol. 59, Iss. 4
Open Access | Times Cited: 29

Showing 1-25 of 29 citing articles:

Tonic and phasic transcutaneous auricular vagus nerve stimulation (taVNS) both evoke rapid and transient pupil dilation
Lina Skora, Anna Marzecová, Gerhard Jocham
Brain stimulation (2024) Vol. 17, Iss. 2, pp. 233-244
Open Access | Times Cited: 18

Transcutaneous Auricular Vagus Nerve Stimulation Does Not Accelerate Fear Extinction: A Randomized, Sham‐Controlled Study
Martina D’Agostini, Lucas Vanden Bossche, Andreas M. Burger, et al.
Psychophysiology (2025) Vol. 62, Iss. 1
Closed Access | Times Cited: 1

Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer’s disease intervention through the brain-gut-microbiota axis?
Long Yan, Hong Li, Yulin Qian, et al.
Frontiers in Aging Neuroscience (2024) Vol. 16
Open Access | Times Cited: 11

Short bursts of transcutaneous auricular vagus nerve stimulation enhance evoked pupil dilation as a function of stimulation parameters
Martina D’Agostini, Andreas M. Burger, Mathijs Franssen, et al.
Cortex (2022) Vol. 159, pp. 233-253
Open Access | Times Cited: 36

Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis
Manon Giraudier, Carlos Ventura‐Bort, Andreas M. Burger, et al.
Brain stimulation (2022) Vol. 15, Iss. 6, pp. 1378-1388
Open Access | Times Cited: 32

Phasic, Event-Related Transcutaneous Auricular Vagus Nerve Stimulation Modifies Behavioral, Pupillary, and Low-Frequency Oscillatory Power Responses
Christian Wienke, Marcus Grueschow, Aiden Haghikia, et al.
Journal of Neuroscience (2023) Vol. 43, Iss. 36, pp. 6306-6319
Open Access | Times Cited: 21

Auricular Transcutaneous Vagus Nerve Stimulation Specifically Enhances Working Memory Gate Closing Mechanism: A System Neurophysiological Study
Anyla Konjusha, Shijing Yu, Moritz Mückschel, et al.
Journal of Neuroscience (2023) Vol. 43, Iss. 25, pp. 4709-4724
Open Access | Times Cited: 17

Does transcutaneous auricular vagus nerve stimulation alter pupil dilation? A living Bayesian meta-analysis
Ipek Pervaz, Lilly Thurn, Cecilia Vezzani, et al.
Brain stimulation (2025) Vol. 18, Iss. 2, pp. 148-157
Open Access

Influence of transcutaneous electrical stimulation on marksmanship, cognition, and the healthy stress response
Caitlin Ridgewell, Cara Sczuroski, Donna J. Merullo, et al.
International Journal of Psychophysiology (2025) Vol. 210, pp. 112540-112540
Closed Access

Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the P300: Do Stimulation Duration and Stimulation Type Matter?
Manon Giraudier, Carlos Ventura‐Bort, Mathias Weymar
Brain Sciences (2024) Vol. 14, Iss. 7, pp. 690-690
Open Access | Times Cited: 3

Does transcutaneous vagus nerve stimulation alter pupil dilation? A living Bayesian meta-analysis
Ipek Pervaz, Lilly Thurn, Cecilia Vezzani, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2024)
Open Access | Times Cited: 3

Impact of Stimulation Duration in taVNS—Exploring Multiple Physiological and Cognitive Outcomes
Till Bömmer, Luisa M. Schmidt, Katharina Meier, et al.
Brain Sciences (2024) Vol. 14, Iss. 9, pp. 875-875
Open Access | Times Cited: 2

Advances in VNS efficiency and mechanisms of action on cognitive functions
Wendi Wang, Rui Li, Chuangtao Li, et al.
Frontiers in Physiology (2024) Vol. 15
Open Access | Times Cited: 2

Effects of transcutaneous auricular vagus nerve stimulation on P300 magnitudes and salivary alpha-amylase during an auditory oddball task
Martina D’Agostini, Andreas M. Burger, Valentina Jelinčić, et al.
Biological Psychology (2023) Vol. 182, pp. 108646-108646
Open Access | Times Cited: 5

Non-invasive cervical vagus nerve stimulation effects on reaction time and valence image anticipation response
Imanuel Lerman, Ruth Klaming, Andrea D. Spadoni, et al.
Brain stimulation (2022) Vol. 15, Iss. 4, pp. 946-956
Open Access | Times Cited: 8

300 Hz transcutaneous auricular vagus nerve stimulation (taVNS) impacts pupil size nonlinearly as a function of intensity
Ian Phillips, Michael Johns, Nick B. Pandža, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2024)
Open Access | Times Cited: 1

Non‐invasive vagus nerve stimulation and the motivation to work for rewards: A replication of Neuser et al. (2020, Nature Communications)
Federica Lucchi, Beth Lloyd, Sander Nieuwenhuis
Psychophysiology (2023) Vol. 61, Iss. 4
Open Access | Times Cited: 2

Transcutaneous Auricular Vagus Nerve Stimulation for Managing Pain: A Scoping Review
Jie Chen, Huan Kuang, A. L. Chen, et al.
Pain Management Nursing (2024)
Closed Access

Page 1 - Next Page

Scroll to top