OpenAlex Citation Counts

OpenAlex Citations Logo

OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!

If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.

Requested Article:

Multi-omics Based Identification of Specific Biochemical Changes Associated With PfKelch13-Mutant Artemisinin-Resistant Plasmodium falciparum
Ghizal Siddiqui, Anubhav Srivastava, Adrian S. Russell, et al.
The Journal of Infectious Diseases (2017) Vol. 215, Iss. 9, pp. 1435-1444
Open Access | Times Cited: 99

Showing 1-25 of 99 citing articles:

A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites
Jakob Birnbaum, Sarah Scharf, Sabine Schmidt, et al.
Science (2020) Vol. 367, Iss. 6473, pp. 51-59
Open Access | Times Cited: 354

Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria
Kathryn J. Wicht, Sachel Mok, David A. Fidock
Annual Review of Microbiology (2020) Vol. 74, Iss. 1, pp. 431-454
Open Access | Times Cited: 211

Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning Artemisinin Resistance
Tuo Yang, Lee M. Yeoh, Madel V. Tutor, et al.
Cell Reports (2019) Vol. 29, Iss. 9, pp. 2917-2928.e5
Open Access | Times Cited: 147

Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness
Barbara H. Stokes, Satish K. Dhingra, Kelly Rubiano, et al.
eLife (2021) Vol. 10
Open Access | Times Cited: 130

Artemisinin-resistant K13 mutations rewire Plasmodium falciparum’s intra-erythrocytic metabolic program to enhance survival
Sachel Mok, Barbara H. Stokes, Nina F. Gnädig, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 120

Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa
Philip J. Rosenthal, Victor Asua, Melissa D. Conrad
Nature Reviews Microbiology (2024) Vol. 22, Iss. 6, pp. 373-384
Closed Access | Times Cited: 47

Elucidating Mechanisms of Drug-Resistant Plasmodium falciparum
Leila S. Ross, David A. Fidock
Cell Host & Microbe (2019) Vol. 26, Iss. 1, pp. 35-47
Open Access | Times Cited: 111

Discovery and Validation of Clinical Biomarkers of Cancer: A Review Combining Metabolomics and Proteomics
Anubhav Srivastava, Darren J. Creek
PROTEOMICS (2018) Vol. 19, Iss. 10
Closed Access | Times Cited: 93

K13, the Cytostome, and Artemisinin Resistance
Stanley C. Xie, Stuart A. Ralph, Leann Tilley
Trends in Parasitology (2020) Vol. 36, Iss. 6, pp. 533-544
Open Access | Times Cited: 92

Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13
Nina F. Gnädig, Barbara H. Stokes, Rachel L. Edwards, et al.
PLoS Pathogens (2020) Vol. 16, Iss. 4, pp. e1008482-e1008482
Open Access | Times Cited: 76

Advances in the research on the targets of anti-malaria actions of artemisinin
H. J. Yang, Yingke He, Yinbao Li, et al.
Pharmacology & Therapeutics (2020) Vol. 216, pp. 107697-107697
Open Access | Times Cited: 71

Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook
Faiza Amber Siddiqui, Xiaoying Liang, Liwang Cui
International Journal for Parasitology Drugs and Drug Resistance (2021) Vol. 16, pp. 102-118
Open Access | Times Cited: 71

Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells
Ghizal Siddiqui, Carlo Giannangelo, Amanda De Paoli, et al.
ACS Infectious Diseases (2022) Vol. 8, Iss. 1, pp. 210-226
Open Access | Times Cited: 38

tRNA modification reprogramming contributes to artemisinin resistance in Plasmodium falciparum
Jennifer L. Small-Saunders, Ameya Sinha, Talia S. Bloxham, et al.
Nature Microbiology (2024) Vol. 9, Iss. 6, pp. 1483-1498
Open Access | Times Cited: 10

Impact of different mutations on Kelch13 protein levels, ART resistance, and fitness cost in Plasmodium falciparum parasites
Hannah Michaela Behrens, Sabine Schmidt, Isabelle G. Henshall, et al.
mBio (2024) Vol. 15, Iss. 6
Open Access | Times Cited: 9

Endocytosis in Plasmodium and Toxoplasma Parasites
Tobias Spielmann, Simon Gras, Ricarda Sabitzki, et al.
Trends in Parasitology (2020) Vol. 36, Iss. 6, pp. 520-532
Closed Access | Times Cited: 67

Modification of pfap2μ and pfubp1 Markedly Reduces Ring-Stage Susceptibility of Plasmodium falciparum to Artemisinin In Vitro
Ryan C. Henrici, Donelly A. van Schalkwyk, Colin J. Sutherland
Antimicrobial Agents and Chemotherapy (2019) Vol. 64, Iss. 1
Open Access | Times Cited: 64

Sulfoxide‐Containing Polymer‐Coated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation
Ruirui Qiao, Changkui Fu, Yuhuan Li, et al.
Advanced Science (2020) Vol. 7, Iss. 13
Open Access | Times Cited: 64

The many paths to artemisinin resistance in Plasmodium falciparum
Kushankur Pandit, Namita Surolia, Souvik Bhattacharjee, et al.
Trends in Parasitology (2023) Vol. 39, Iss. 12, pp. 1060-1073
Closed Access | Times Cited: 17

The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome
Mark F. Wiser
Pathogens (2024) Vol. 13, Iss. 3, pp. 182-182
Open Access | Times Cited: 6

Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline)
Miaoyi Wang, Ove Gustafsson, Ghizal Siddiqui, et al.
Nanoscale (2018) Vol. 10, Iss. 23, pp. 10863-10875
Open Access | Times Cited: 54

Plasmodium falciparum Artemisinin Resistance: The Effect of Heme, Protein Damage, and Parasite Cell Stress Response
Melissa R. Rosenthal, Caroline L. Ng
ACS Infectious Diseases (2020) Vol. 6, Iss. 7, pp. 1599-1614
Open Access | Times Cited: 45

Ozonide Antimalarial Activity in the Context of Artemisinin-Resistant Malaria
Carlo Giannangelo, Freya J. I. Fowkes, J. A. Simpson, et al.
Trends in Parasitology (2019) Vol. 35, Iss. 7, pp. 529-543
Open Access | Times Cited: 44

Multi-omic Characterization of the Mode of Action of a Potent New Antimalarial Compound, JPC-3210, Against Plasmodium falciparum
Geoffrey W. Birrell, Matthew Challis, Amanda De Paoli, et al.
Molecular & Cellular Proteomics (2019) Vol. 19, Iss. 2, pp. 308-325
Open Access | Times Cited: 44

From Circulation to Cultivation: Plasmodium In Vivo versus In Vitro
Audrey C. Brown, Jennifer L. Güler
Trends in Parasitology (2020) Vol. 36, Iss. 11, pp. 914-926
Open Access | Times Cited: 41

Page 1 - Next Page

Scroll to top