OpenAlex Citation Counts

OpenAlex Citations Logo

OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!

If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.

Requested Article:

A molecular perspective of mammalian autophagosome biogenesis
Thomas J. Mercer, Andrea Gubaš, Sharon A. Tooze
Journal of Biological Chemistry (2018) Vol. 293, Iss. 15, pp. 5386-5395
Open Access | Times Cited: 253

Showing 1-25 of 253 citing articles:

Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System
Nur Mehpare Kocatürk, Devrim Gözüaçık
Frontiers in Cell and Developmental Biology (2018) Vol. 6
Open Access | Times Cited: 355

Autophagy as a molecular target for cancer treatment
Nur Mehpare Kocatürk, Yunus Akkoç, Cenk Kığ, et al.
European Journal of Pharmaceutical Sciences (2019) Vol. 134, pp. 116-137
Closed Access | Times Cited: 337

Autophagy: An Essential Degradation Program for Cellular Homeostasis and Life
Yoomi Chun, Joungmok Kim
Cells (2018) Vol. 7, Iss. 12, pp. 278-278
Open Access | Times Cited: 321

Roles of Autophagy in Oxidative Stress
Hyeong Rok Yun, Yong Hwa Jo, Ji‐Eun Kim, et al.
International Journal of Molecular Sciences (2020) Vol. 21, Iss. 9, pp. 3289-3289
Open Access | Times Cited: 300

The autophagic membrane tether ATG2A transfers lipids between membranes
Shintaro Maeda, Chinatsu Otomo, Takanori Otomo
eLife (2019) Vol. 8
Open Access | Times Cited: 286

Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma
Tiffany Tsang, Jessica M. Posimo, A. Andrea Gudiel, et al.
Nature Cell Biology (2020) Vol. 22, Iss. 4, pp. 412-424
Open Access | Times Cited: 283

The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria
Benjamin J. Ravenhill, Keith B. Boyle, Natalia von Muhlinen, et al.
Molecular Cell (2019) Vol. 74, Iss. 2, pp. 320-329.e6
Open Access | Times Cited: 268

Autophagosome biogenesis: From membrane growth to closure
Thomas J. Melia, Alf Håkon Lystad, Anne Simonsen
The Journal of Cell Biology (2020) Vol. 219, Iss. 6
Open Access | Times Cited: 267

TEX264 Is an Endoplasmic Reticulum-Resident ATG8-Interacting Protein Critical for ER Remodeling during Nutrient Stress
Heeseon An, Alban Ordureau, João A. Paulo, et al.
Molecular Cell (2019) Vol. 74, Iss. 5, pp. 891-908.e10
Open Access | Times Cited: 249

The Emerging Roles of mTORC1 in Macromanaging Autophagy
Akpedje Serena Dossou, Alakananda Basu
Cancers (2019) Vol. 11, Iss. 10, pp. 1422-1422
Open Access | Times Cited: 233

The ménage à trois of autophagy, lipid droplets and liver disease
Yasmina Filali-Mouncef, Catherine J. Hunter, Federica Roccio, et al.
Autophagy (2021) Vol. 18, Iss. 1, pp. 50-72
Open Access | Times Cited: 222

Emerging roles of ATG proteins and membrane lipids in autophagosome formation
Taki Nishimura, Sharon A. Tooze
Cell Discovery (2020) Vol. 6, Iss. 1
Open Access | Times Cited: 218

Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs
Shanique Alabi, Craig M. Crews
Journal of Biological Chemistry (2021) Vol. 296, pp. 100647-100647
Open Access | Times Cited: 189

ULK1 and ULK2 Regulate Stress Granule Disassembly Through Phosphorylation and Activation of VCP/p97
Bo Wang, Brian A. Maxwell, Joung Hyuck Joo, et al.
Molecular Cell (2019) Vol. 74, Iss. 4, pp. 742-757.e8
Open Access | Times Cited: 158

Activation and targeting of ATG8 protein lipidation
Sascha Martens, Dorotea Fracchiolla
Cell Discovery (2020) Vol. 6, Iss. 1
Open Access | Times Cited: 157

Rab5-dependent autophagosome closure by ESCRT
Fan Zhou, Zulin Wu, Mengzhu Zhao, et al.
The Journal of Cell Biology (2019) Vol. 218, Iss. 6, pp. 1908-1927
Open Access | Times Cited: 156

A guide to the regulation of selective autophagy receptors
Andrea Gubaš, Ivan Đikić
FEBS Journal (2021) Vol. 289, Iss. 1, pp. 75-89
Open Access | Times Cited: 155

Beyond autophagy: LC3-associated phagocytosis and endocytosis
Carolina Peña-Martinez, Alexis Rickman, Bradlee L. Heckmann
Science Advances (2022) Vol. 8, Iss. 43
Open Access | Times Cited: 112

ATG9A and ATG2A form a heteromeric complex essential for autophagosome formation
Alexander R. van Vliet, George N. Chiduza, Sarah Maslen, et al.
Molecular Cell (2022) Vol. 82, Iss. 22, pp. 4324-4339.e8
Open Access | Times Cited: 91

ER remodeling via ER-phagy
Andrea Gubaš, Ivan Đikić
Molecular Cell (2022) Vol. 82, Iss. 8, pp. 1492-1500
Open Access | Times Cited: 82

Unconventional initiation of PINK1/Parkin mitophagy by Optineurin
Thanh Ngoc Nguyen, Justyna Sawa‐Makarska, Grace Khuu, et al.
Molecular Cell (2023) Vol. 83, Iss. 10, pp. 1693-1709.e9
Open Access | Times Cited: 53

Quantitative analysis of autophagy reveals the role of ATG9 and ATG2 in autophagosome formation
David Broadbent, Carlo Barnaba, Gloria I. Perez, et al.
The Journal of Cell Biology (2023) Vol. 222, Iss. 7
Open Access | Times Cited: 49

Molecular determinants regulating selective binding of autophagy adapters and receptors to ATG8 proteins
Martina Wirth, Wenxin Zhang, Minoo Razi, et al.
Nature Communications (2019) Vol. 10, Iss. 1
Open Access | Times Cited: 141

Genetic Analyses of the Arabidopsis ATG1 Kinase Complex Reveal Both Kinase-Dependent and Independent Autophagic Routes during Fixed-Carbon Starvation
Xiao Huang, Chunyan Zheng, Fen Liu, et al.
The Plant Cell (2019) Vol. 31, Iss. 12, pp. 2973-2995
Open Access | Times Cited: 116

Page 1 - Next Page

Scroll to top