
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Designing neural networks through neuroevolution
Kenneth O. Stanley, Jeff Clune, Joel Lehman, et al.
Nature Machine Intelligence (2018) Vol. 1, Iss. 1, pp. 24-35
Closed Access | Times Cited: 601
Kenneth O. Stanley, Jeff Clune, Joel Lehman, et al.
Nature Machine Intelligence (2018) Vol. 1, Iss. 1, pp. 24-35
Closed Access | Times Cited: 601
Showing 1-25 of 601 citing articles:
Neural Architecture Search: A Survey
Thomas Elsken, Jan Hendrik Metzen, Frank Hutter
arXiv (Cornell University) (2018)
Open Access | Times Cited: 1386
Thomas Elsken, Jan Hendrik Metzen, Frank Hutter
arXiv (Cornell University) (2018)
Open Access | Times Cited: 1386
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2021), pp. 1-1
Open Access | Times Cited: 1294
Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2021), pp. 1-1
Open Access | Times Cited: 1294
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare
Jonathan Waring, Charlotta Lindvall, Renato Umeton
Artificial Intelligence in Medicine (2020) Vol. 104, pp. 101822-101822
Open Access | Times Cited: 661
Jonathan Waring, Charlotta Lindvall, Renato Umeton
Artificial Intelligence in Medicine (2020) Vol. 104, pp. 101822-101822
Open Access | Times Cited: 661
Neural network models and deep learning
Nikolaus Kriegeskorte, Tal Golan
Current Biology (2019) Vol. 29, Iss. 7, pp. R231-R236
Open Access | Times Cited: 406
Nikolaus Kriegeskorte, Tal Golan
Current Biology (2019) Vol. 29, Iss. 7, pp. R231-R236
Open Access | Times Cited: 406
A Survey on Evolutionary Neural Architecture Search
Yuqiao Liu, Yanan Sun, Bing Xue, et al.
IEEE Transactions on Neural Networks and Learning Systems (2021) Vol. 34, Iss. 2, pp. 550-570
Open Access | Times Cited: 362
Yuqiao Liu, Yanan Sun, Bing Xue, et al.
IEEE Transactions on Neural Networks and Learning Systems (2021) Vol. 34, Iss. 2, pp. 550-570
Open Access | Times Cited: 362
Differential evolution: A recent review based on state-of-the-art works
M. F. Ahmad, Nor Ashidi Mat Isa, Wei Hong Lim, et al.
Alexandria Engineering Journal (2021) Vol. 61, Iss. 5, pp. 3831-3872
Open Access | Times Cited: 288
M. F. Ahmad, Nor Ashidi Mat Isa, Wei Hong Lim, et al.
Alexandria Engineering Journal (2021) Vol. 61, Iss. 5, pp. 3831-3872
Open Access | Times Cited: 288
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, et al.
arXiv (Cornell University) (2020)
Closed Access | Times Cited: 227
Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, et al.
arXiv (Cornell University) (2020)
Closed Access | Times Cited: 227
A Survey on Deep Learning Techniques for Stereo-Based Depth Estimation
Hamid Laga, Laurent Valentin Jospin, Farid Boussaïd, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2020) Vol. 44, Iss. 4, pp. 1738-1764
Open Access | Times Cited: 223
Hamid Laga, Laurent Valentin Jospin, Farid Boussaïd, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2020) Vol. 44, Iss. 4, pp. 1738-1764
Open Access | Times Cited: 223
Deep learning-based cardiovascular image diagnosis: A promising challenge
Kelvin K. L. Wong, Giancarlo Fortino, Derek Abbott
Future Generation Computer Systems (2019) Vol. 110, pp. 802-811
Closed Access | Times Cited: 163
Kelvin K. L. Wong, Giancarlo Fortino, Derek Abbott
Future Generation Computer Systems (2019) Vol. 110, pp. 802-811
Closed Access | Times Cited: 163
Catalyzing next-generation Artificial Intelligence through NeuroAI
Anthony M. Zador, G. Sean Escola, Blake A. Richards, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 163
Anthony M. Zador, G. Sean Escola, Blake A. Richards, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 163
Reinforcement learning in robotic applications: a comprehensive survey
Bharat Singh, Rajesh Kumar, V. P. Singh
Artificial Intelligence Review (2021) Vol. 55, Iss. 2, pp. 945-990
Closed Access | Times Cited: 156
Bharat Singh, Rajesh Kumar, V. P. Singh
Artificial Intelligence Review (2021) Vol. 55, Iss. 2, pp. 945-990
Closed Access | Times Cited: 156
A survey of swarm and evolutionary computing approaches for deep learning
Ashraf Darwish, Aboul Ella Hassanien, Swagatam Das
Artificial Intelligence Review (2019) Vol. 53, Iss. 3, pp. 1767-1812
Closed Access | Times Cited: 152
Ashraf Darwish, Aboul Ella Hassanien, Swagatam Das
Artificial Intelligence Review (2019) Vol. 53, Iss. 3, pp. 1767-1812
Closed Access | Times Cited: 152
Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods
David Montes de Oca Zapiain, James A. Stewart, Rémi Dingreville
npj Computational Materials (2021) Vol. 7, Iss. 1
Open Access | Times Cited: 150
David Montes de Oca Zapiain, James A. Stewart, Rémi Dingreville
npj Computational Materials (2021) Vol. 7, Iss. 1
Open Access | Times Cited: 150
Reconfigurable perovskite nickelate electronics for artificial intelligence
Haitian Zhang, Tae Joon Park, A. N. M. Nafiul Islam, et al.
Science (2022) Vol. 375, Iss. 6580, pp. 533-539
Open Access | Times Cited: 149
Haitian Zhang, Tae Joon Park, A. N. M. Nafiul Islam, et al.
Science (2022) Vol. 375, Iss. 6580, pp. 533-539
Open Access | Times Cited: 149
Evolutionary Machine Learning: A Survey
Akbar Telikani, Amirhessam Tahmassebi, Wolfgang Banzhaf, et al.
ACM Computing Surveys (2021) Vol. 54, Iss. 8, pp. 1-35
Open Access | Times Cited: 140
Akbar Telikani, Amirhessam Tahmassebi, Wolfgang Banzhaf, et al.
ACM Computing Surveys (2021) Vol. 54, Iss. 8, pp. 1-35
Open Access | Times Cited: 140
Biological underpinnings for lifelong learning machines
Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, et al.
Nature Machine Intelligence (2022) Vol. 4, Iss. 3, pp. 196-210
Closed Access | Times Cited: 126
Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, et al.
Nature Machine Intelligence (2022) Vol. 4, Iss. 3, pp. 196-210
Closed Access | Times Cited: 126
Training effective deep reinforcement learning agents for real-time life-cycle production optimization
Kai Zhang, Zhongzheng Wang, Guodong Chen, et al.
Journal of Petroleum Science and Engineering (2021) Vol. 208, pp. 109766-109766
Closed Access | Times Cited: 125
Kai Zhang, Zhongzheng Wang, Guodong Chen, et al.
Journal of Petroleum Science and Engineering (2021) Vol. 208, pp. 109766-109766
Closed Access | Times Cited: 125
Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges
Edgar Galván, Peter Mooney
IEEE Transactions on Artificial Intelligence (2021) Vol. 2, Iss. 6, pp. 476-493
Open Access | Times Cited: 122
Edgar Galván, Peter Mooney
IEEE Transactions on Artificial Intelligence (2021) Vol. 2, Iss. 6, pp. 476-493
Open Access | Times Cited: 122
Evolving deep neural networks
Risto Miikkulainen, Jason Liang, Elliot Meyerson, et al.
Elsevier eBooks (2023), pp. 269-287
Open Access | Times Cited: 122
Risto Miikkulainen, Jason Liang, Elliot Meyerson, et al.
Elsevier eBooks (2023), pp. 269-287
Open Access | Times Cited: 122
A Self-Adaptive Mutation Neural Architecture Search Algorithm Based on Blocks
Yu Xue, Yankang Wang, Jiayu Liang, et al.
IEEE Computational Intelligence Magazine (2021) Vol. 16, Iss. 3, pp. 67-78
Closed Access | Times Cited: 110
Yu Xue, Yankang Wang, Jiayu Liang, et al.
IEEE Computational Intelligence Magazine (2021) Vol. 16, Iss. 3, pp. 67-78
Closed Access | Times Cited: 110
Deep problems with neural network models of human vision
Jeffrey S. Bowers, Gaurav Malhotra, Marin Dujmović, et al.
Behavioral and Brain Sciences (2022) Vol. 46
Open Access | Times Cited: 106
Jeffrey S. Bowers, Gaurav Malhotra, Marin Dujmović, et al.
Behavioral and Brain Sciences (2022) Vol. 46
Open Access | Times Cited: 106
Differentiable quantum architecture search
Shi‐Xin Zhang, Chang‐Yu Hsieh, Shengyu Zhang, et al.
Quantum Science and Technology (2022) Vol. 7, Iss. 4, pp. 045023-045023
Open Access | Times Cited: 94
Shi‐Xin Zhang, Chang‐Yu Hsieh, Shengyu Zhang, et al.
Quantum Science and Technology (2022) Vol. 7, Iss. 4, pp. 045023-045023
Open Access | Times Cited: 94
Molecular convolutional neural networks with DNA regulatory circuits
Xiewei Xiong, Tong Zhu, Yun Zhu, et al.
Nature Machine Intelligence (2022) Vol. 4, Iss. 7, pp. 625-635
Open Access | Times Cited: 89
Xiewei Xiong, Tong Zhu, Yun Zhu, et al.
Nature Machine Intelligence (2022) Vol. 4, Iss. 7, pp. 625-635
Open Access | Times Cited: 89
Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues
Nan Li, Lianbo Ma, Guo Yu, et al.
ACM Computing Surveys (2023) Vol. 56, Iss. 2, pp. 1-34
Open Access | Times Cited: 58
Nan Li, Lianbo Ma, Guo Yu, et al.
ACM Computing Surveys (2023) Vol. 56, Iss. 2, pp. 1-34
Open Access | Times Cited: 58
REVIEWING THE ROLE OF ARTIFICIAL INTELLIGENCE IN ENERGY EFFICIENCY OPTIMIZATION
Tosin Michael Olatunde, Azubuike Chukwudi Okwandu, Dorcas Oluwajuwonlo Akande, et al.
Engineering Science & Technology Journal (2024) Vol. 5, Iss. 4, pp. 1243-1256
Open Access | Times Cited: 25
Tosin Michael Olatunde, Azubuike Chukwudi Okwandu, Dorcas Oluwajuwonlo Akande, et al.
Engineering Science & Technology Journal (2024) Vol. 5, Iss. 4, pp. 1243-1256
Open Access | Times Cited: 25