
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Unsupervised learning architecture for classifying the transient noise of interferometric gravitational-wave detectors
Yusuke Sakai, Y. Itoh, P. Jung, et al.
Scientific Reports (2022) Vol. 12, Iss. 1
Open Access | Times Cited: 15
Yusuke Sakai, Y. Itoh, P. Jung, et al.
Scientific Reports (2022) Vol. 12, Iss. 1
Open Access | Times Cited: 15
Showing 15 citing articles:
Data quality up to the third observing run of advanced LIGO: Gravity Spy glitch classifications
J Glanzer, S. Banagiri, S B Coughlin, et al.
Classical and Quantum Gravity (2023) Vol. 40, Iss. 6, pp. 065004-065004
Open Access | Times Cited: 33
J Glanzer, S. Banagiri, S B Coughlin, et al.
Classical and Quantum Gravity (2023) Vol. 40, Iss. 6, pp. 065004-065004
Open Access | Times Cited: 33
Gravity Spy: lessons learned and a path forward
M. Zevin, Corey Jackson, Z. Doctor, et al.
The European Physical Journal Plus (2024) Vol. 139, Iss. 1
Open Access | Times Cited: 9
M. Zevin, Corey Jackson, Z. Doctor, et al.
The European Physical Journal Plus (2024) Vol. 139, Iss. 1
Open Access | Times Cited: 9
A review of unsupervised learning in astronomy
S. Fotopoulou
Astronomy and Computing (2024) Vol. 48, pp. 100851-100851
Open Access | Times Cited: 7
S. Fotopoulou
Astronomy and Computing (2024) Vol. 48, pp. 100851-100851
Open Access | Times Cited: 7
AI in Gravitational Wave Analysis, an Overview
V. Benedetto, Francesco Gissi, Gioele Ciaparrone, et al.
Applied Sciences (2023) Vol. 13, Iss. 17, pp. 9886-9886
Open Access | Times Cited: 12
V. Benedetto, Francesco Gissi, Gioele Ciaparrone, et al.
Applied Sciences (2023) Vol. 13, Iss. 17, pp. 9886-9886
Open Access | Times Cited: 12
Machine Learning for Single‐Station Detection of Transient Deformation in GPS Time Series With a Case Study of Cascadia Slow Slip
Xueming Xue, J. T. Freymueller
Journal of Geophysical Research Solid Earth (2023) Vol. 128, Iss. 2
Open Access | Times Cited: 9
Xueming Xue, J. T. Freymueller
Journal of Geophysical Research Solid Earth (2023) Vol. 128, Iss. 2
Open Access | Times Cited: 9
Comparative study of 1D and 2D convolutional neural network models with attribution analysis for gravitational wave detection from compact binary coalescences
Seiya Sasaoka, Naoki Koyama, Diego Dominguez, et al.
Physical review. D/Physical review. D. (2024) Vol. 109, Iss. 4
Open Access | Times Cited: 3
Seiya Sasaoka, Naoki Koyama, Diego Dominguez, et al.
Physical review. D/Physical review. D. (2024) Vol. 109, Iss. 4
Open Access | Times Cited: 3
Localization of gravitational waves using machine learning
Seiya Sasaoka, Yilun Hou, K. Somiya, et al.
Physical review. D/Physical review. D. (2022) Vol. 105, Iss. 10
Open Access | Times Cited: 9
Seiya Sasaoka, Yilun Hou, K. Somiya, et al.
Physical review. D/Physical review. D. (2022) Vol. 105, Iss. 10
Open Access | Times Cited: 9
Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset
Yusuke Sakai, Y. Itoh, P. Jung, et al.
Annalen der Physik (2022) Vol. 536, Iss. 2
Open Access | Times Cited: 5
Yusuke Sakai, Y. Itoh, P. Jung, et al.
Annalen der Physik (2022) Vol. 536, Iss. 2
Open Access | Times Cited: 5
Evaluation and Proposal of CNN for Defect Detection Trained Using Invariant Information Clustering and Only Non-defective Images
博久 加藤, 寅臣 永田
産業応用工学会論文誌 (2024) Vol. 12, Iss. 1, pp. 72-78
Open Access
博久 加藤, 寅臣 永田
産業応用工学会論文誌 (2024) Vol. 12, Iss. 1, pp. 72-78
Open Access
Enhancing the rationale of convolutional neural networks for glitch classification in gravitational wave detectors: a visual explanation
Naoki Koyama, Yusuke Sakai, Seiya Sasaoka, et al.
Machine Learning Science and Technology (2024) Vol. 5, Iss. 3, pp. 035028-035028
Open Access
Naoki Koyama, Yusuke Sakai, Seiya Sasaoka, et al.
Machine Learning Science and Technology (2024) Vol. 5, Iss. 3, pp. 035028-035028
Open Access
Automated design of digital filters using convolutional neural networks for extracting ringdown gravitational waves
Kazuki Sakai, Sodtavilan Odonchimed, Masaaki Takano, et al.
Machine Learning Science and Technology (2024) Vol. 5, Iss. 4, pp. 045043-045043
Open Access
Kazuki Sakai, Sodtavilan Odonchimed, Masaaki Takano, et al.
Machine Learning Science and Technology (2024) Vol. 5, Iss. 4, pp. 045043-045043
Open Access
Extracting overlapping gravitational-wave signals of Galactic compact binaries: a mini review
Rui Niu, Wen Zhao
Fundamental Research (2024)
Open Access
Rui Niu, Wen Zhao
Fundamental Research (2024)
Open Access
重力波観測における突発性雑音の教師なし分類
Yusuke Sakai, Yoshikazu Terada, Hirotaka Takahashi
Ouyou toukeigaku (2024) Vol. 53, Iss. 1, pp. 33-54
Closed Access
Yusuke Sakai, Yoshikazu Terada, Hirotaka Takahashi
Ouyou toukeigaku (2024) Vol. 53, Iss. 1, pp. 33-54
Closed Access
Efficient Machine Learning Ensemble Methods for Detecting Gravitational Wave Glitches in LIGO Time Series
Elena-Simona Apostol, Ciprian-Octavian Truică
(2023) Vol. 30, pp. 79-86
Open Access | Times Cited: 1
Elena-Simona Apostol, Ciprian-Octavian Truică
(2023) Vol. 30, pp. 79-86
Open Access | Times Cited: 1
Comparative Study of 1D and 2D CNN Models with Attribution Analysis for Gravitational Wave Detection from Compact Binary Coalescences
Seiya Sasaoka, Naoki Koyama, Diego Dominguez, et al.
arXiv (Cornell University) (2023)
Open Access
Seiya Sasaoka, Naoki Koyama, Diego Dominguez, et al.
arXiv (Cornell University) (2023)
Open Access