
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF
Abrar Aljahani, Hua Peng, Magdalena A. Karpińska, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 91
Abrar Aljahani, Hua Peng, Magdalena A. Karpińska, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 91
Showing 1-25 of 91 citing articles:
Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1
Tsung-Han S. Hsieh, Claudia Cattoglio, Elena Slobodyanyuk, et al.
Nature Genetics (2022) Vol. 54, Iss. 12, pp. 1919-1932
Open Access | Times Cited: 245
Tsung-Han S. Hsieh, Claudia Cattoglio, Elena Slobodyanyuk, et al.
Nature Genetics (2022) Vol. 54, Iss. 12, pp. 1919-1932
Open Access | Times Cited: 245
Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments
Viraat Y. Goel, Miles K. Huseyin, Anders S. Hansen
Nature Genetics (2023) Vol. 55, Iss. 6, pp. 1048-1056
Open Access | Times Cited: 128
Viraat Y. Goel, Miles K. Huseyin, Anders S. Hansen
Nature Genetics (2023) Vol. 55, Iss. 6, pp. 1048-1056
Open Access | Times Cited: 128
The spatial organization of transcriptional control
Antonina Hafner, Alistair N. Boettiger
Nature Reviews Genetics (2022) Vol. 24, Iss. 1, pp. 53-68
Closed Access | Times Cited: 113
Antonina Hafner, Alistair N. Boettiger
Nature Reviews Genetics (2022) Vol. 24, Iss. 1, pp. 53-68
Closed Access | Times Cited: 113
Topologically associating domain boundaries are required for normal genome function
Sudha Rajderkar, Iros Barozzi, Yiwen Zhu, et al.
Communications Biology (2023) Vol. 6, Iss. 1
Open Access | Times Cited: 85
Sudha Rajderkar, Iros Barozzi, Yiwen Zhu, et al.
Communications Biology (2023) Vol. 6, Iss. 1
Open Access | Times Cited: 85
Enhancer–promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness
Shreeta Chakraborty, Nina Kopitchinski, Zhenyu Zuo, et al.
Nature Genetics (2023) Vol. 55, Iss. 2, pp. 280-290
Open Access | Times Cited: 74
Shreeta Chakraborty, Nina Kopitchinski, Zhenyu Zuo, et al.
Nature Genetics (2023) Vol. 55, Iss. 2, pp. 280-290
Open Access | Times Cited: 74
Bondita Dehingia, Małgorzata Milewska, Marcin Janowski, et al.
EMBO Reports (2022) Vol. 23, Iss. 9
Open Access | Times Cited: 69
Loop stacking organizes genome folding from TADs to chromosomes
Antonina Hafner, Minhee Park, Scott E. Berger, et al.
Molecular Cell (2023) Vol. 83, Iss. 9, pp. 1377-1392.e6
Closed Access | Times Cited: 67
Antonina Hafner, Minhee Park, Scott E. Berger, et al.
Molecular Cell (2023) Vol. 83, Iss. 9, pp. 1377-1392.e6
Closed Access | Times Cited: 67
Direct observation of a condensate effect on super-enhancer controlled gene bursting
Manyu Du, Simon Hendrik Stitzinger, Jan-Hendrik Spille, et al.
Cell (2024) Vol. 187, Iss. 2, pp. 331-344.e17
Open Access | Times Cited: 66
Manyu Du, Simon Hendrik Stitzinger, Jan-Hendrik Spille, et al.
Cell (2024) Vol. 187, Iss. 2, pp. 331-344.e17
Open Access | Times Cited: 66
The Mediator complex regulates enhancer-promoter interactions
Shyam Ramasamy, Abrar Aljahani, Magdalena A. Karpińska, et al.
Nature Structural & Molecular Biology (2023) Vol. 30, Iss. 7, pp. 991-1000
Open Access | Times Cited: 55
Shyam Ramasamy, Abrar Aljahani, Magdalena A. Karpińska, et al.
Nature Structural & Molecular Biology (2023) Vol. 30, Iss. 7, pp. 991-1000
Open Access | Times Cited: 55
Enhancer selectivity in space and time: from enhancer–promoter interactions to promoter activation
Jin Yang, Anders S. Hansen
Nature Reviews Molecular Cell Biology (2024) Vol. 25, Iss. 7, pp. 574-591
Closed Access | Times Cited: 49
Jin Yang, Anders S. Hansen
Nature Reviews Molecular Cell Biology (2024) Vol. 25, Iss. 7, pp. 574-591
Closed Access | Times Cited: 49
Polymer folding through active processes recreates features of genome organization
Andriy Goychuk, Deepti Kannan, Arup K. Chakraborty, et al.
Proceedings of the National Academy of Sciences (2023) Vol. 120, Iss. 20
Open Access | Times Cited: 44
Andriy Goychuk, Deepti Kannan, Arup K. Chakraborty, et al.
Proceedings of the National Academy of Sciences (2023) Vol. 120, Iss. 20
Open Access | Times Cited: 44
TADs: Dynamic structures to create stable regulatory functions
José A. da Costa-Nunes, Daan Noordermeer
Current Opinion in Structural Biology (2023) Vol. 81, pp. 102622-102622
Open Access | Times Cited: 42
José A. da Costa-Nunes, Daan Noordermeer
Current Opinion in Structural Biology (2023) Vol. 81, pp. 102622-102622
Open Access | Times Cited: 42
In vitro reconstitution of chromatin domains shows a role for nucleosome positioning in 3D genome organization
Elisa Oberbeckmann, Kimberly Quililan, Patrick Cramer, et al.
Nature Genetics (2024) Vol. 56, Iss. 3, pp. 483-492
Open Access | Times Cited: 31
Elisa Oberbeckmann, Kimberly Quililan, Patrick Cramer, et al.
Nature Genetics (2024) Vol. 56, Iss. 3, pp. 483-492
Open Access | Times Cited: 31
Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding
Mattia Conte, Ehsan Irani, Andrea M. Chiariello, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 68
Mattia Conte, Ehsan Irani, Andrea M. Chiariello, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 68
New insights into genome folding by loop extrusion from inducible degron technologies
Elzo de Wit, Elphège P. Nora
Nature Reviews Genetics (2022) Vol. 24, Iss. 2, pp. 73-85
Closed Access | Times Cited: 59
Elzo de Wit, Elphège P. Nora
Nature Reviews Genetics (2022) Vol. 24, Iss. 2, pp. 73-85
Closed Access | Times Cited: 59
Capture-C: a modular and flexible approach for high-resolution chromosome conformation capture
Damien J. Downes, Alastair Smith, Magdalena A. Karpińska, et al.
Nature Protocols (2022) Vol. 17, Iss. 2, pp. 445-475
Open Access | Times Cited: 45
Damien J. Downes, Alastair Smith, Magdalena A. Karpińska, et al.
Nature Protocols (2022) Vol. 17, Iss. 2, pp. 445-475
Open Access | Times Cited: 45
The role of loop extrusion in enhancer-mediated gene activation
Magdalena A. Karpińska, Aukje Marieke Oudelaar
Current Opinion in Genetics & Development (2023) Vol. 79, pp. 102022-102022
Open Access | Times Cited: 32
Magdalena A. Karpińska, Aukje Marieke Oudelaar
Current Opinion in Genetics & Development (2023) Vol. 79, pp. 102022-102022
Open Access | Times Cited: 32
Determining chromatin architecture with Micro Capture-C
Joseph C. Hamley, Hangpeng Li, Nicholas Denny, et al.
Nature Protocols (2023) Vol. 18, Iss. 6, pp. 1687-1711
Open Access | Times Cited: 28
Joseph C. Hamley, Hangpeng Li, Nicholas Denny, et al.
Nature Protocols (2023) Vol. 18, Iss. 6, pp. 1687-1711
Open Access | Times Cited: 28
Enhancer–promoter specificity in gene transcription: molecular mechanisms and disease associations
Meyer J. Friedman, Tobias Wagner, Haram Lee, et al.
Experimental & Molecular Medicine (2024) Vol. 56, Iss. 4, pp. 772-787
Open Access | Times Cited: 13
Meyer J. Friedman, Tobias Wagner, Haram Lee, et al.
Experimental & Molecular Medicine (2024) Vol. 56, Iss. 4, pp. 772-787
Open Access | Times Cited: 13
Mapping nucleosome-resolution chromatin organization and enhancer-promoter loops in plants using Micro-C-XL
Linhua Sun, Jingru Zhou, Xiao Xu, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 12
Linhua Sun, Jingru Zhou, Xiao Xu, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 12
FACT maintains chromatin architecture and thereby stimulates RNA polymerase II pausing during transcription in vivo
Kristina Žumer, Moritz Ochmann, Abrar Aljahani, et al.
Molecular Cell (2024) Vol. 84, Iss. 11, pp. 2053-2069.e9
Open Access | Times Cited: 10
Kristina Žumer, Moritz Ochmann, Abrar Aljahani, et al.
Molecular Cell (2024) Vol. 84, Iss. 11, pp. 2053-2069.e9
Open Access | Times Cited: 10
Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization
Hossein Salari, Geneviève Fourel, Daniel Jost
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 9
Hossein Salari, Geneviève Fourel, Daniel Jost
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 9
An extrinsic motor directs chromatin loop formation by cohesin
Thomas M Guérin, Christopher Barrington, Georgii Pobegalov, et al.
The EMBO Journal (2024) Vol. 43, Iss. 19, pp. 4173-4196
Closed Access | Times Cited: 9
Thomas M Guérin, Christopher Barrington, Georgii Pobegalov, et al.
The EMBO Journal (2024) Vol. 43, Iss. 19, pp. 4173-4196
Closed Access | Times Cited: 9
Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments
Viraat Y. Goel, Miles K. Huseyin, Anders S. Hansen
bioRxiv (Cold Spring Harbor Laboratory) (2022)
Open Access | Times Cited: 35
Viraat Y. Goel, Miles K. Huseyin, Anders S. Hansen
bioRxiv (Cold Spring Harbor Laboratory) (2022)
Open Access | Times Cited: 35
Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems
Olga Kyrchanova, Vladimir Sokolov, Pavel Georgiev
International Journal of Molecular Sciences (2023) Vol. 24, Iss. 3, pp. 2855-2855
Open Access | Times Cited: 21
Olga Kyrchanova, Vladimir Sokolov, Pavel Georgiev
International Journal of Molecular Sciences (2023) Vol. 24, Iss. 3, pp. 2855-2855
Open Access | Times Cited: 21