OpenAlex Citation Counts

OpenAlex Citations Logo

OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!

If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.

Requested Article:

Phosphoproteomic Approach to Characterize Protein Mono- and Poly(ADP-ribosyl)ation Sites from Cells
Casey M. Daniels, Shao‐En Ong, Anthony K. L. Leung
Journal of Proteome Research (2014) Vol. 13, Iss. 8, pp. 3510-3522
Open Access | Times Cited: 113

Showing 1-25 of 113 citing articles:

PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes
Rebecca Gupte, Ziying Liu, W. Lee Kraus
Genes & Development (2017) Vol. 31, Iss. 2, pp. 101-126
Open Access | Times Cited: 618

NAD+ in Brain Aging and Neurodegenerative Disorders
Sofie Lautrup, David Sinclair, Mark P. Mattson, et al.
Cell Metabolism (2019) Vol. 30, Iss. 4, pp. 630-655
Open Access | Times Cited: 560

Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins
Elizaveta E. Alemasova, Olga I. Lavrik
Nucleic Acids Research (2019) Vol. 47, Iss. 8, pp. 3811-3827
Open Access | Times Cited: 387

Serine ADP-Ribosylation Depends on HPF1
Juán José Bonfiglio, Pietro Fontana, Qi Zhang, et al.
Molecular Cell (2017) Vol. 65, Iss. 5, pp. 932-940.e6
Open Access | Times Cited: 315

Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination
Sagar Bhogaraju, Sissy Kalayil, Yaobin Liu, et al.
Cell (2016) Vol. 167, Iss. 6, pp. 1636-1649.e13
Open Access | Times Cited: 281

Readers of poly(ADP-ribose): designed to be fit for purpose
Federico Teloni, Matthias Altmeyer
Nucleic Acids Research (2015) Vol. 44, Iss. 3, pp. 993-1006
Open Access | Times Cited: 226

ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease
Bernhard Lüscher, Mareike Bütepage, Laura Eckei, et al.
Chemical Reviews (2017) Vol. 118, Iss. 3, pp. 1092-1136
Closed Access | Times Cited: 223

Serine is a new target residue for endogenous ADP-ribosylation on histones
Orsolya Leidecker, Juán José Bonfiglio, Thomas Colby, et al.
Nature Chemical Biology (2016) Vol. 12, Iss. 12, pp. 998-1000
Open Access | Times Cited: 219

Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity, Cell Differentiation, and Epigenetics
Michael O. Hottiger
Annual Review of Biochemistry (2015) Vol. 84, Iss. 1, pp. 227-263
Open Access | Times Cited: 216

Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue
Rita Martello, Mario Leutert, Stephanie Jungmichel, et al.
Nature Communications (2016) Vol. 7, Iss. 1
Open Access | Times Cited: 212

The role of poly ADP-ribosylation in the first wave of DNA damage response
Chao Liu, Aditi Vyas, Muzaffer Ahmad Kassab, et al.
Nucleic Acids Research (2017) Vol. 45, Iss. 14, pp. 8129-8141
Open Access | Times Cited: 198

The Promise of Proteomics for the Study of ADP-Ribosylation
Casey M. Daniels, Shao-En Ong, Anthony K. L. Leung
Molecular Cell (2015) Vol. 58, Iss. 6, pp. 911-924
Open Access | Times Cited: 193

ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence
Robert Lyle McPherson, Rachy Abraham, Easwaran Sreekumar, et al.
Proceedings of the National Academy of Sciences (2017) Vol. 114, Iss. 7, pp. 1666-1671
Open Access | Times Cited: 176

An Advanced Strategy for Comprehensive Profiling of ADP-ribosylation Sites Using Mass Spectrometry-based Proteomics*
Ivo A. Hendriks, Sara C. Buch-Larsen, Michael L. Nielsen
Molecular & Cellular Proteomics (2019) Vol. 18, Iss. 5, pp. 1010a-1026
Open Access | Times Cited: 153

PARPs and ADP-Ribosylation: 50 Years … and Counting
W. Lee Kraus
Molecular Cell (2015) Vol. 58, Iss. 6, pp. 902-910
Open Access | Times Cited: 166

ADP‐ribosylation: new facets of an ancient modification
Luca Palazzo, Andreja Mikoč, Ivan Ahel
FEBS Journal (2017) Vol. 284, Iss. 18, pp. 2932-2946
Open Access | Times Cited: 129

Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation
Anthony K. L. Leung
Trends in Cell Biology (2020) Vol. 30, Iss. 5, pp. 370-383
Open Access | Times Cited: 129

New Facets in the Regulation of Gene Expression by ADP-Ribosylation and Poly(ADP-ribose) Polymerases
Keun Woo Ryu, Dae-Seok Kim, W. Lee Kraus
Chemical Reviews (2015) Vol. 115, Iss. 6, pp. 2453-2481
Open Access | Times Cited: 127

Common errors in mass spectrometry‐based analysis of post‐translational modifications
Min‐Sik Kim, Jun Zhong, Akhilesh Pandey
PROTEOMICS (2015) Vol. 16, Iss. 5, pp. 700-714
Open Access | Times Cited: 126

Processing of protein ADP-ribosylation by Nudix hydrolases
Luca Palazzo, Benjamin Thomas, Ann‐Sofie Jemth, et al.
Biochemical Journal (2015) Vol. 468, Iss. 2, pp. 293-301
Open Access | Times Cited: 125

Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis
Anthony R. Fehr, Gytis Jankevicius, Ivan Ahel, et al.
Trends in Microbiology (2017) Vol. 26, Iss. 7, pp. 598-610
Open Access | Times Cited: 114

Mapping Physiological ADP-Ribosylation Using Activated Ion Electron Transfer Dissociation
Sara C. Buch-Larsen, Ivo A. Hendriks, Jean M. Lodge, et al.
Cell Reports (2020) Vol. 32, Iss. 12, pp. 108176-108176
Open Access | Times Cited: 103

RNA Regulation by Poly(ADP-Ribose) Polymerases
Florian J. Bock, Tanya Todorova, Paul Chang
Molecular Cell (2015) Vol. 58, Iss. 6, pp. 959-969
Open Access | Times Cited: 100

The rise and fall of poly(ADP-ribose): An enzymatic perspective
John M. Pascal, Tom Ellenberger
DNA repair (2015) Vol. 32, pp. 10-16
Open Access | Times Cited: 97

The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy
M Li, Xiaoli Yu
Oncogene (2014) Vol. 34, Iss. 26, pp. 3349-3356
Open Access | Times Cited: 95

Page 1 - Next Page

Scroll to top