
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Wearable Triboelectric–Human–Machine Interface (THMI) Using Robust Nanophotonic Readout
Bowei Dong, Yanqin Yang, Qiongfeng Shi, et al.
ACS Nano (2020) Vol. 14, Iss. 7, pp. 8915-8930
Closed Access | Times Cited: 147
Bowei Dong, Yanqin Yang, Qiongfeng Shi, et al.
ACS Nano (2020) Vol. 14, Iss. 7, pp. 8915-8930
Closed Access | Times Cited: 147
Showing 1-25 of 147 citing articles:
Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
Tao Jin, Zhongda Sun, Long Li, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 527
Tao Jin, Zhongda Sun, Long Li, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 527
Recent Progress in Flexible Tactile Sensors for Human‐Interactive Systems: From Sensors to Advanced Applications
Soonjae Pyo, Jae Yong Lee, Kyubin Bae, et al.
Advanced Materials (2021) Vol. 33, Iss. 47
Closed Access | Times Cited: 442
Soonjae Pyo, Jae Yong Lee, Kyubin Bae, et al.
Advanced Materials (2021) Vol. 33, Iss. 47
Closed Access | Times Cited: 442
AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove
Feng Wen, Zixuan Zhang, Tianyiyi He, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 340
Feng Wen, Zixuan Zhang, Tianyiyi He, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 340
Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions
Zhongda Sun, Minglu Zhu, Xuechuan Shan, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 321
Zhongda Sun, Minglu Zhu, Xuechuan Shan, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 321
Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications
Zixuan Zhang, Tianyiyi He, Minglu Zhu, et al.
npj Flexible Electronics (2020) Vol. 4, Iss. 1
Open Access | Times Cited: 315
Zixuan Zhang, Tianyiyi He, Minglu Zhu, et al.
npj Flexible Electronics (2020) Vol. 4, Iss. 1
Open Access | Times Cited: 315
Portable and wearable self-powered systems based on emerging energy harvesting technology
Chen Xu, Yu Song, Mengdi Han, et al.
Microsystems & Nanoengineering (2021) Vol. 7, Iss. 1
Open Access | Times Cited: 291
Chen Xu, Yu Song, Mengdi Han, et al.
Microsystems & Nanoengineering (2021) Vol. 7, Iss. 1
Open Access | Times Cited: 291
Progress inTENG technology—A journey from energy harvesting to nanoenergy and nanosystem
Jianxiong Zhu, Minglu Zhu, Qiongfeng Shi, et al.
EcoMat (2020) Vol. 2, Iss. 4
Open Access | Times Cited: 264
Jianxiong Zhu, Minglu Zhu, Qiongfeng Shi, et al.
EcoMat (2020) Vol. 2, Iss. 4
Open Access | Times Cited: 264
Technology evolution from self-powered sensors to AIoT enabled smart homes
Bowei Dong, Qiongfeng Shi, Yanqin Yang, et al.
Nano Energy (2020) Vol. 79, pp. 105414-105414
Closed Access | Times Cited: 263
Bowei Dong, Qiongfeng Shi, Yanqin Yang, et al.
Nano Energy (2020) Vol. 79, pp. 105414-105414
Closed Access | Times Cited: 263
Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems
Minglu Zhu, Tianyiyi He, Chengkuo Lee
Applied Physics Reviews (2020) Vol. 7, Iss. 3
Closed Access | Times Cited: 243
Minglu Zhu, Tianyiyi He, Chengkuo Lee
Applied Physics Reviews (2020) Vol. 7, Iss. 3
Closed Access | Times Cited: 243
Making use of nanoenergy from human – Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems
Minglu Zhu, Zhiran Yi, Bin Yang, et al.
Nano Today (2020) Vol. 36, pp. 101016-101016
Closed Access | Times Cited: 230
Minglu Zhu, Zhiran Yi, Bin Yang, et al.
Nano Today (2020) Vol. 36, pp. 101016-101016
Closed Access | Times Cited: 230
Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth
Yanqin Yang, Xinge Guo, Minglu Zhu, et al.
Advanced Energy Materials (2022) Vol. 13, Iss. 1
Closed Access | Times Cited: 215
Yanqin Yang, Xinge Guo, Minglu Zhu, et al.
Advanced Energy Materials (2022) Vol. 13, Iss. 1
Closed Access | Times Cited: 215
Artificial Intelligence of Things (AIoT) Enabled Virtual Shop Applications Using Self‐Powered Sensor Enhanced Soft Robotic Manipulator
Zhongda Sun, Minglu Zhu, Zixuan Zhang, et al.
Advanced Science (2021) Vol. 8, Iss. 14
Open Access | Times Cited: 205
Zhongda Sun, Minglu Zhu, Zixuan Zhang, et al.
Advanced Science (2021) Vol. 8, Iss. 14
Open Access | Times Cited: 205
Recent Advances in Carbon Material‐Based Multifunctional Sensors and Their Applications in Electronic Skin Systems
Yunjian Guo, Wei Xiao, Song Gao, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 40
Closed Access | Times Cited: 200
Yunjian Guo, Wei Xiao, Song Gao, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 40
Closed Access | Times Cited: 200
Electronic skin as wireless human-machine interfaces for robotic VR
Yiming Liu, Chun Ki Yiu, Zhen Song, et al.
Science Advances (2022) Vol. 8, Iss. 2
Open Access | Times Cited: 197
Yiming Liu, Chun Ki Yiu, Zhen Song, et al.
Science Advances (2022) Vol. 8, Iss. 2
Open Access | Times Cited: 197
Wearable triboelectric sensors for biomedical monitoring and human-machine interface
Xianjie Pu, Shanshan An, Qian Tang, et al.
iScience (2021) Vol. 24, Iss. 1, pp. 102027-102027
Open Access | Times Cited: 168
Xianjie Pu, Shanshan An, Qian Tang, et al.
iScience (2021) Vol. 24, Iss. 1, pp. 102027-102027
Open Access | Times Cited: 168
Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system
Minglu Zhu, Zhongda Sun, Tao Chen, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 161
Minglu Zhu, Zhongda Sun, Tao Chen, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 161
Design, manufacturing and applications of wearable triboelectric nanogenerators
Haobin Wang, Mengdi Han, Yu Song, et al.
Nano Energy (2020) Vol. 81, pp. 105627-105627
Closed Access | Times Cited: 142
Haobin Wang, Mengdi Han, Yu Song, et al.
Nano Energy (2020) Vol. 81, pp. 105627-105627
Closed Access | Times Cited: 142
Recent Progress of Functional Fiber and Textile Triboelectric Nanogenerators: Towards Electricity Power Generation and Intelligent Sensing
Wei Wang, Aifang Yu, Junyi Zhai, et al.
Advanced Fiber Materials (2021) Vol. 3, Iss. 6, pp. 394-412
Closed Access | Times Cited: 128
Wei Wang, Aifang Yu, Junyi Zhai, et al.
Advanced Fiber Materials (2021) Vol. 3, Iss. 6, pp. 394-412
Closed Access | Times Cited: 128
Multifunctional Flexible Sensor Based on PU‐TA@MXene Janus Architecture for Selective Direction Recognition
Ju Bai, Wen Gu, Yuanyuan Bai, et al.
Advanced Materials (2023) Vol. 35, Iss. 35
Closed Access | Times Cited: 123
Ju Bai, Wen Gu, Yuanyuan Bai, et al.
Advanced Materials (2023) Vol. 35, Iss. 35
Closed Access | Times Cited: 123
Artificial Intelligence of Things (AIoT) Enabled Floor Monitoring System for Smart Home Applications
Qiongfeng Shi, Zixuan Zhang, Yanqin Yang, et al.
ACS Nano (2021) Vol. 15, Iss. 11, pp. 18312-18326
Closed Access | Times Cited: 120
Qiongfeng Shi, Zixuan Zhang, Yanqin Yang, et al.
ACS Nano (2021) Vol. 15, Iss. 11, pp. 18312-18326
Closed Access | Times Cited: 120
Spider‐Web and Ant‐Tentacle Doubly Bio‐Inspired Multifunctional Self‐Powered Electronic Skin with Hierarchical Nanostructure
Ouyang Yue, Xuechuan Wang, Xinhua Liu, et al.
Advanced Science (2021) Vol. 8, Iss. 15
Open Access | Times Cited: 117
Ouyang Yue, Xuechuan Wang, Xinhua Liu, et al.
Advanced Science (2021) Vol. 8, Iss. 15
Open Access | Times Cited: 117
Recent Progress in the Energy Harvesting Technology—From Self-Powered Sensors to Self-Sustained IoT, and New Applications
Long Liu, Xinge Guo, Weixin Liu, et al.
Nanomaterials (2021) Vol. 11, Iss. 11, pp. 2975-2975
Open Access | Times Cited: 102
Long Liu, Xinge Guo, Weixin Liu, et al.
Nanomaterials (2021) Vol. 11, Iss. 11, pp. 2975-2975
Open Access | Times Cited: 102
Recent progress in energy harvesting systems for wearable technology
Ahsan Ali, Hamna Shaukat, Saira Bibi, et al.
Energy Strategy Reviews (2023) Vol. 49, pp. 101124-101124
Open Access | Times Cited: 101
Ahsan Ali, Hamna Shaukat, Saira Bibi, et al.
Energy Strategy Reviews (2023) Vol. 49, pp. 101124-101124
Open Access | Times Cited: 101
Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications
Cheng Xu, Zhihao Ren, Jingxuan Wei, et al.
iScience (2022) Vol. 25, Iss. 2, pp. 103799-103799
Open Access | Times Cited: 84
Cheng Xu, Zhihao Ren, Jingxuan Wei, et al.
iScience (2022) Vol. 25, Iss. 2, pp. 103799-103799
Open Access | Times Cited: 84
Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics
Hong Zhou, Liangge Xu, Zhihao Ren, et al.
Nanoscale Advances (2022) Vol. 5, Iss. 3, pp. 538-570
Open Access | Times Cited: 73
Hong Zhou, Liangge Xu, Zhihao Ren, et al.
Nanoscale Advances (2022) Vol. 5, Iss. 3, pp. 538-570
Open Access | Times Cited: 73