
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Exposing the Limitations of Molecular Machine Learning with Activity Cliffs
Derek van Tilborg, Alisa Alenicheva, Francesca Grisoni
Journal of Chemical Information and Modeling (2022) Vol. 62, Iss. 23, pp. 5938-5951
Open Access | Times Cited: 116
Derek van Tilborg, Alisa Alenicheva, Francesca Grisoni
Journal of Chemical Information and Modeling (2022) Vol. 62, Iss. 23, pp. 5938-5951
Open Access | Times Cited: 116
Showing 1-25 of 116 citing articles:
Artificial intelligence for natural product drug discovery
Michael W. Mullowney, Katherine Duncan, Somayah S. Elsayed, et al.
Nature Reviews Drug Discovery (2023) Vol. 22, Iss. 11, pp. 895-916
Closed Access | Times Cited: 142
Michael W. Mullowney, Katherine Duncan, Somayah S. Elsayed, et al.
Nature Reviews Drug Discovery (2023) Vol. 22, Iss. 11, pp. 895-916
Closed Access | Times Cited: 142
Augmenting large language models with chemistry tools
Andres M. Bran, Sam Cox, Oliver Schilter, et al.
Nature Machine Intelligence (2024) Vol. 6, Iss. 5, pp. 525-535
Open Access | Times Cited: 131
Andres M. Bran, Sam Cox, Oliver Schilter, et al.
Nature Machine Intelligence (2024) Vol. 6, Iss. 5, pp. 525-535
Open Access | Times Cited: 131
Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering
Jason Yang, Francesca-Zhoufan Li, Frances H. Arnold
ACS Central Science (2024) Vol. 10, Iss. 2, pp. 226-241
Open Access | Times Cited: 67
Jason Yang, Francesca-Zhoufan Li, Frances H. Arnold
ACS Central Science (2024) Vol. 10, Iss. 2, pp. 226-241
Open Access | Times Cited: 67
A systematic study of key elements underlying molecular property prediction
Jianyuan Deng, Zhibo Yang, Hehe Wang, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 66
Jianyuan Deng, Zhibo Yang, Hehe Wang, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 66
Chemical language models for de novo drug design: Challenges and opportunities
Francesca Grisoni
Current Opinion in Structural Biology (2023) Vol. 79, pp. 102527-102527
Open Access | Times Cited: 62
Francesca Grisoni
Current Opinion in Structural Biology (2023) Vol. 79, pp. 102527-102527
Open Access | Times Cited: 62
Predicting compound activity from phenotypic profiles and chemical structures
Nikita Moshkov, Tim Becker, Kevin Yang, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 62
Nikita Moshkov, Tim Becker, Kevin Yang, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 62
A Perspective on Explanations of Molecular Prediction Models
Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, et al.
Journal of Chemical Theory and Computation (2023) Vol. 19, Iss. 8, pp. 2149-2160
Open Access | Times Cited: 48
Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, et al.
Journal of Chemical Theory and Computation (2023) Vol. 19, Iss. 8, pp. 2149-2160
Open Access | Times Cited: 48
Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion Prediction: An Industrial Perspective
Cheng Fang, Ye Wang, Richard Grater, et al.
Journal of Chemical Information and Modeling (2023) Vol. 63, Iss. 11, pp. 3263-3274
Closed Access | Times Cited: 42
Cheng Fang, Ye Wang, Richard Grater, et al.
Journal of Chemical Information and Modeling (2023) Vol. 63, Iss. 11, pp. 3263-3274
Closed Access | Times Cited: 42
Unleashing the power of generative AI in drug discovery
Amit Gangwal, Antonio Lavecchia
Drug Discovery Today (2024) Vol. 29, Iss. 6, pp. 103992-103992
Open Access | Times Cited: 32
Amit Gangwal, Antonio Lavecchia
Drug Discovery Today (2024) Vol. 29, Iss. 6, pp. 103992-103992
Open Access | Times Cited: 32
Generative artificial intelligence in drug discovery: basic framework, recent advances, challenges, and opportunities
Amit Gangwal, M. Azim Ansari, Iqrar Ahmad, et al.
Frontiers in Pharmacology (2024) Vol. 15
Open Access | Times Cited: 27
Amit Gangwal, M. Azim Ansari, Iqrar Ahmad, et al.
Frontiers in Pharmacology (2024) Vol. 15
Open Access | Times Cited: 27
The role and potential of computer-aided drug discovery strategies in the discovery of novel antimicrobials
Samson O. Oselusi, Phumuzile Dube, Adeshina I. Odugbemi, et al.
Computers in Biology and Medicine (2024) Vol. 169, pp. 107927-107927
Open Access | Times Cited: 21
Samson O. Oselusi, Phumuzile Dube, Adeshina I. Odugbemi, et al.
Computers in Biology and Medicine (2024) Vol. 169, pp. 107927-107927
Open Access | Times Cited: 21
Extrapolative prediction of small-data molecular property using quantum mechanics-assisted machine learning
Hajime Shimakawa, Akiko Kumada, Masahiro Sato
npj Computational Materials (2024) Vol. 10, Iss. 1
Open Access | Times Cited: 18
Hajime Shimakawa, Akiko Kumada, Masahiro Sato
npj Computational Materials (2024) Vol. 10, Iss. 1
Open Access | Times Cited: 18
Artificial intelligence in drug development
Kang Zhang, Xin Yang, Yifei Wang, et al.
Nature Medicine (2025) Vol. 31, Iss. 1, pp. 45-59
Closed Access | Times Cited: 12
Kang Zhang, Xin Yang, Yifei Wang, et al.
Nature Medicine (2025) Vol. 31, Iss. 1, pp. 45-59
Closed Access | Times Cited: 12
fragSMILES as a chemical string notation for advanced fragment and chirality representation
Fabrizio Mastrolorito, Fulvio Ciriaco, Maria Vittoria Togo, et al.
Communications Chemistry (2025) Vol. 8, Iss. 1
Open Access | Times Cited: 2
Fabrizio Mastrolorito, Fulvio Ciriaco, Maria Vittoria Togo, et al.
Communications Chemistry (2025) Vol. 8, Iss. 1
Open Access | Times Cited: 2
Structure‐Based Drug Discovery with Deep Learning**
Rıza Özçelik, Derek van Tilborg, José Jiménez-Luna, et al.
ChemBioChem (2023) Vol. 24, Iss. 13
Open Access | Times Cited: 37
Rıza Özçelik, Derek van Tilborg, José Jiménez-Luna, et al.
ChemBioChem (2023) Vol. 24, Iss. 13
Open Access | Times Cited: 37
A knowledge-guided pre-training framework for improving molecular representation learning
Han Li, Ruotian Zhang, Yaosen Min, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 36
Han Li, Ruotian Zhang, Yaosen Min, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 36
A Data-Driven Workflow for Assigning and Predicting Generality in Asymmetric Catalysis
Isaiah O. Betinol, Junshan Lai, Saumya Thakur, et al.
Journal of the American Chemical Society (2023) Vol. 145, Iss. 23, pp. 12870-12883
Closed Access | Times Cited: 31
Isaiah O. Betinol, Junshan Lai, Saumya Thakur, et al.
Journal of the American Chemical Society (2023) Vol. 145, Iss. 23, pp. 12870-12883
Closed Access | Times Cited: 31
Machine learning for small molecule drug discovery in academia and industry
Andrea Volkamer, Sereina Riniker, Eva Nittinger, et al.
Artificial Intelligence in the Life Sciences (2023) Vol. 3, pp. 100056-100056
Open Access | Times Cited: 30
Andrea Volkamer, Sereina Riniker, Eva Nittinger, et al.
Artificial Intelligence in the Life Sciences (2023) Vol. 3, pp. 100056-100056
Open Access | Times Cited: 30
Integrated Molecular Modeling and Machine Learning for Drug Design
Song Xia, Eric Chen, Yingkai Zhang
Journal of Chemical Theory and Computation (2023) Vol. 19, Iss. 21, pp. 7478-7495
Open Access | Times Cited: 30
Song Xia, Eric Chen, Yingkai Zhang
Journal of Chemical Theory and Computation (2023) Vol. 19, Iss. 21, pp. 7478-7495
Open Access | Times Cited: 30
Practical guidelines for the use of gradient boosting for molecular property prediction
Davide Boldini, Francesca Grisoni, Daniel Kühn, et al.
Journal of Cheminformatics (2023) Vol. 15, Iss. 1
Open Access | Times Cited: 29
Davide Boldini, Francesca Grisoni, Daniel Kühn, et al.
Journal of Cheminformatics (2023) Vol. 15, Iss. 1
Open Access | Times Cited: 29
Exploring QSAR models for activity-cliff prediction
Markus Dablander, Thierry Hanser, Renaud Lambiotte, et al.
Journal of Cheminformatics (2023) Vol. 15, Iss. 1
Open Access | Times Cited: 25
Markus Dablander, Thierry Hanser, Renaud Lambiotte, et al.
Journal of Cheminformatics (2023) Vol. 15, Iss. 1
Open Access | Times Cited: 25
A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies
Krishnendu Sinha, Nabanita Ghosh, Parames C. Sil
Chemical Research in Toxicology (2023) Vol. 36, Iss. 8, pp. 1174-1205
Closed Access | Times Cited: 22
Krishnendu Sinha, Nabanita Ghosh, Parames C. Sil
Chemical Research in Toxicology (2023) Vol. 36, Iss. 8, pp. 1174-1205
Closed Access | Times Cited: 22
Effectiveness of molecular fingerprints for exploring the chemical space of natural products
Davide Boldini, Davide Ballabio, Viviana Consonni, et al.
Journal of Cheminformatics (2024) Vol. 16, Iss. 1
Open Access | Times Cited: 14
Davide Boldini, Davide Ballabio, Viviana Consonni, et al.
Journal of Cheminformatics (2024) Vol. 16, Iss. 1
Open Access | Times Cited: 14
Deep learning for low-data drug discovery: Hurdles and opportunities
Derek van Tilborg, Helena Brinkmann, Emanuele Criscuolo, et al.
Current Opinion in Structural Biology (2024) Vol. 86, pp. 102818-102818
Open Access | Times Cited: 12
Derek van Tilborg, Helena Brinkmann, Emanuele Criscuolo, et al.
Current Opinion in Structural Biology (2024) Vol. 86, pp. 102818-102818
Open Access | Times Cited: 12
iSIM: instant similarity
Kenneth López-Pérez, Taewon David Kim, Ramón Alain Miranda‐Quintana
Digital Discovery (2024) Vol. 3, Iss. 6, pp. 1160-1171
Open Access | Times Cited: 9
Kenneth López-Pérez, Taewon David Kim, Ramón Alain Miranda‐Quintana
Digital Discovery (2024) Vol. 3, Iss. 6, pp. 1160-1171
Open Access | Times Cited: 9