OpenAlex Citation Counts

OpenAlex Citations Logo

OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!

If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.

Requested Article:

Ultrastretchable Strain Sensors and Arrays with High Sensitivity and Linearity Based on Super Tough Conductive Hydrogels
Zhenwu Wang, Jing Chen, Yang Cong, et al.
Chemistry of Materials (2018) Vol. 30, Iss. 21, pp. 8062-8069
Closed Access | Times Cited: 364

Showing 1-25 of 364 citing articles:

Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment
Hyo‐Ryoung Lim, Hee Seok Kim, Raza Qazi, et al.
Advanced Materials (2019) Vol. 32, Iss. 15
Closed Access | Times Cited: 873

Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezing‐Tolerant Ionic Conductive Organohydrogel for Multi‐Functional Sensors
Yuhang Ye, Yifan Zhang, Yuan Chen, et al.
Advanced Functional Materials (2020) Vol. 30, Iss. 35
Closed Access | Times Cited: 650

Stretchable and tough conductive hydrogels for flexible pressure and strain sensors
Zhenwu Wang, Yang Cong, Jun Fu
Journal of Materials Chemistry B (2020) Vol. 8, Iss. 16, pp. 3437-3459
Closed Access | Times Cited: 495

Green Tea Derivative Driven Smart Hydrogels with Desired Functions for Chronic Diabetic Wound Treatment
Xiaodan Zhao, Dandan Pei, Yuxuan Yang, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 18
Closed Access | Times Cited: 399

Stretchable, Injectable, and Self-Healing Conductive Hydrogel Enabled by Multiple Hydrogen Bonding toward Wearable Electronics
Jingsi Chen, Qiongyao Peng, Thomas Thundat, et al.
Chemistry of Materials (2019) Vol. 31, Iss. 12, pp. 4553-4563
Closed Access | Times Cited: 390

Mimicking Human and Biological Skins for Multifunctional Skin Electronics
Youngoh Lee, Jonghwa Park, Ayoung Choe, et al.
Advanced Functional Materials (2019) Vol. 30, Iss. 20
Closed Access | Times Cited: 375

Multifunctional conductive hydrogel-based flexible wearable sensors
Lirong Wang, Tailin Xu, Xueji Zhang
TrAC Trends in Analytical Chemistry (2020) Vol. 134, pp. 116130-116130
Closed Access | Times Cited: 348

Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions
Xinjie Pei, Hua Zhang, Yang Zhou, et al.
Materials Horizons (2020) Vol. 7, Iss. 7, pp. 1872-1882
Open Access | Times Cited: 335

Ultrastretchable and Stable Strain Sensors Based on Antifreezing and Self-Healing Ionic Organohydrogels for Human Motion Monitoring
Jin Wu, Zixuan Wu, Xing Lu, et al.
ACS Applied Materials & Interfaces (2019) Vol. 11, Iss. 9, pp. 9405-9414
Closed Access | Times Cited: 313

Conductive Hydrogel- and Organohydrogel-Based Stretchable Sensors
Zixuan Wu, Xing Yang, Jin Wu
ACS Applied Materials & Interfaces (2021) Vol. 13, Iss. 2, pp. 2128-2144
Closed Access | Times Cited: 299

Natural skin-inspired versatile cellulose biomimetic hydrogels
Fengcai Lin, Zi Wang, Yanping Shen, et al.
Journal of Materials Chemistry A (2019) Vol. 7, Iss. 46, pp. 26442-26455
Closed Access | Times Cited: 298

Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor
Guoqi Chen, Jianren Huang, Jianfeng Gu, et al.
Journal of Materials Chemistry A (2020) Vol. 8, Iss. 14, pp. 6776-6784
Closed Access | Times Cited: 296

Highly Conducting and Stretchable Double‐Network Hydrogel for Soft Bioelectronics
Gang Li, Kaixi Huang, Jue Deng, et al.
Advanced Materials (2022) Vol. 34, Iss. 15
Closed Access | Times Cited: 296

Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels
Qin Zhang, Xin Liu, Lijie Duan, et al.
Chemical Engineering Journal (2019) Vol. 365, pp. 10-19
Closed Access | Times Cited: 282

Muscle‐Inspired MXene Conductive Hydrogels with Anisotropy and Low‐Temperature Tolerance for Wearable Flexible Sensors and Arrays
Yubin Feng, Hou Liu, Weihang Zhu, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 46
Closed Access | Times Cited: 281

Functional Conductive Hydrogels for Bioelectronics
Fanfan Fu, Jilei Wang, Hongbo Zeng, et al.
ACS Materials Letters (2020) Vol. 2, Iss. 10, pp. 1287-1301
Open Access | Times Cited: 278

From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices
Pei Li, Gunhee Lee, Su Yeong Kim, et al.
ACS Nano (2021) Vol. 15, Iss. 2, pp. 1960-2004
Closed Access | Times Cited: 275

Conductive, Tough, Transparent, and Self-Healing Hydrogels Based on Catechol–Metal Ion Dual Self-Catalysis
Zhanrong Jia, Yan Zeng, Pengfei Tang, et al.
Chemistry of Materials (2019) Vol. 31, Iss. 15, pp. 5625-5632
Closed Access | Times Cited: 268

Environment Tolerant Conductive Nanocomposite Organohydrogels as Flexible Strain Sensors and Power Sources for Sustainable Electronics
Hongling Sun, Yi Zhao, Sulin Jiao, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 24
Closed Access | Times Cited: 265

Freezing-Tolerant, Highly Sensitive Strain and Pressure Sensors Assembled from Ionic Conductive Hydrogels with Dynamic Cross-Links
Hongyan Liu, Xing Wang, Yanxia Cao, et al.
ACS Applied Materials & Interfaces (2020) Vol. 12, Iss. 22, pp. 25334-25344
Closed Access | Times Cited: 258

Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications
Gehong Su, Shuya Yin, Youhong Guo, et al.
Materials Horizons (2021) Vol. 8, Iss. 6, pp. 1795-1804
Closed Access | Times Cited: 242

Multifunctional conductive hydrogels and their applications as smart wearable devices
Zhen Chen, Yujie Chen, Mikael S. Hedenqvist, et al.
Journal of Materials Chemistry B (2021) Vol. 9, Iss. 11, pp. 2561-2583
Closed Access | Times Cited: 238

Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor
Haiyan Zheng, Lin Nan, Yanyi He, et al.
ACS Applied Materials & Interfaces (2021) Vol. 13, Iss. 33, pp. 40013-40031
Closed Access | Times Cited: 235

Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel
Jianren Huang, Shuijiao Peng, Jianfeng Gu, et al.
Materials Horizons (2020) Vol. 7, Iss. 8, pp. 2085-2096
Open Access | Times Cited: 230

Adhesive, Stretchable, and Transparent Organohydrogels for Antifreezing, Antidrying, and Sensitive Ionic Skins
Zhirui He, Weizhong Yuan
ACS Applied Materials & Interfaces (2021) Vol. 13, Iss. 1, pp. 1474-1485
Closed Access | Times Cited: 229

Page 1 - Next Page

Scroll to top