
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Loss of TAX1BP1-Directed Autophagy Results in Protein Aggregate Accumulation in the Brain
Shireen A. Sarraf, Hetal V. Shah, Gil Kanfer, et al.
Molecular Cell (2020) Vol. 80, Iss. 5, pp. 779-795.e10
Open Access | Times Cited: 118
Shireen A. Sarraf, Hetal V. Shah, Gil Kanfer, et al.
Molecular Cell (2020) Vol. 80, Iss. 5, pp. 779-795.e10
Open Access | Times Cited: 118
Showing 1-25 of 118 citing articles:
Autophagy in major human diseases
Daniel J. Klionsky, Giulia Petroni, Ravi K. Amaravadi, et al.
The EMBO Journal (2021) Vol. 40, Iss. 19
Open Access | Times Cited: 1092
Daniel J. Klionsky, Giulia Petroni, Ravi K. Amaravadi, et al.
The EMBO Journal (2021) Vol. 40, Iss. 19
Open Access | Times Cited: 1092
The mechanisms and roles of selective autophagy in mammals
Jose Norberto S. Vargas, Maho Hamasaki, Tsuyoshi Kawabata, et al.
Nature Reviews Molecular Cell Biology (2022) Vol. 24, Iss. 3, pp. 167-185
Closed Access | Times Cited: 569
Jose Norberto S. Vargas, Maho Hamasaki, Tsuyoshi Kawabata, et al.
Nature Reviews Molecular Cell Biology (2022) Vol. 24, Iss. 3, pp. 167-185
Closed Access | Times Cited: 569
Copper-dependent autophagic degradation of GPX4 drives ferroptosis
Qian‐Li Xue, Yan Ding, Xi Chen, et al.
Autophagy (2023) Vol. 19, Iss. 7, pp. 1982-1996
Open Access | Times Cited: 312
Qian‐Li Xue, Yan Ding, Xi Chen, et al.
Autophagy (2023) Vol. 19, Iss. 7, pp. 1982-1996
Open Access | Times Cited: 312
The different autophagy degradation pathways and neurodegeneration
Angeleen Fleming, Mathieu Bourdenx, Motoki Fujimaki, et al.
Neuron (2022) Vol. 110, Iss. 6, pp. 935-966
Open Access | Times Cited: 296
Angeleen Fleming, Mathieu Bourdenx, Motoki Fujimaki, et al.
Neuron (2022) Vol. 110, Iss. 6, pp. 935-966
Open Access | Times Cited: 296
Mechanisms of Selective Autophagy
Trond Lamark, Terje Johansen
Annual Review of Cell and Developmental Biology (2021) Vol. 37, Iss. 1, pp. 143-169
Open Access | Times Cited: 285
Trond Lamark, Terje Johansen
Annual Review of Cell and Developmental Biology (2021) Vol. 37, Iss. 1, pp. 143-169
Open Access | Times Cited: 285
Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation
Eleonora Turco, Adriana Savova, Flora Gere, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 158
Eleonora Turco, Adriana Savova, Flora Gere, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 158
A guide to the regulation of selective autophagy receptors
Andrea Gubaš, Ivan Đikić
FEBS Journal (2021) Vol. 289, Iss. 1, pp. 75-89
Open Access | Times Cited: 155
Andrea Gubaš, Ivan Đikić
FEBS Journal (2021) Vol. 289, Iss. 1, pp. 75-89
Open Access | Times Cited: 155
Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy
Saikat Dewanjee, V. Jayalakshmi, Rajkumar Singh Kalra, et al.
Ageing Research Reviews (2021) Vol. 68, pp. 101338-101338
Closed Access | Times Cited: 129
Saikat Dewanjee, V. Jayalakshmi, Rajkumar Singh Kalra, et al.
Ageing Research Reviews (2021) Vol. 68, pp. 101338-101338
Closed Access | Times Cited: 129
CCT2 is an aggrephagy receptor for clearance of solid protein aggregates
Xinyu Ma, Caijing Lu, Yuting Chen, et al.
Cell (2022) Vol. 185, Iss. 8, pp. 1325-1345.e22
Open Access | Times Cited: 126
Xinyu Ma, Caijing Lu, Yuting Chen, et al.
Cell (2022) Vol. 185, Iss. 8, pp. 1325-1345.e22
Open Access | Times Cited: 126
Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy
Vinay V. Eapen, Sharan Swarup, Melissa Hoyer, et al.
eLife (2021) Vol. 10
Open Access | Times Cited: 123
Vinay V. Eapen, Sharan Swarup, Melissa Hoyer, et al.
eLife (2021) Vol. 10
Open Access | Times Cited: 123
ER-phagy: mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum
Fulvio Reggiori, Maurizio Molinari
Physiological Reviews (2022) Vol. 102, Iss. 3, pp. 1393-1448
Open Access | Times Cited: 111
Fulvio Reggiori, Maurizio Molinari
Physiological Reviews (2022) Vol. 102, Iss. 3, pp. 1393-1448
Open Access | Times Cited: 111
Orchestration of selective autophagy by cargo receptors
Elias Adriaenssens, Luca Ferrari, Sascha Martens
Current Biology (2022) Vol. 32, Iss. 24, pp. R1357-R1371
Open Access | Times Cited: 77
Elias Adriaenssens, Luca Ferrari, Sascha Martens
Current Biology (2022) Vol. 32, Iss. 24, pp. R1357-R1371
Open Access | Times Cited: 77
The Multiple Roles of Autophagy in Neural Function and Diseases
Yanyan Li, Zheng‐Hong Qin, Rui Sheng
Neuroscience Bulletin (2023) Vol. 40, Iss. 3, pp. 363-382
Open Access | Times Cited: 43
Yanyan Li, Zheng‐Hong Qin, Rui Sheng
Neuroscience Bulletin (2023) Vol. 40, Iss. 3, pp. 363-382
Open Access | Times Cited: 43
Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors
Xiaowan Huang, Ziyang Cao, Jieying Qian, et al.
Nature Nanotechnology (2024) Vol. 19, Iss. 4, pp. 545-553
Open Access | Times Cited: 17
Xiaowan Huang, Ziyang Cao, Jieying Qian, et al.
Nature Nanotechnology (2024) Vol. 19, Iss. 4, pp. 545-553
Open Access | Times Cited: 17
Systematically defining selective autophagy receptor-specific cargo using autophagosome content profiling
Susanne Zellner, Martina Schifferer, Christian Behrends
Molecular Cell (2021) Vol. 81, Iss. 6, pp. 1337-1354.e8
Open Access | Times Cited: 99
Susanne Zellner, Martina Schifferer, Christian Behrends
Molecular Cell (2021) Vol. 81, Iss. 6, pp. 1337-1354.e8
Open Access | Times Cited: 99
Iron‐induced NCOA4 condensation regulates ferritin fate and iron homeostasis
Sota Kuno, Hiroaki Fujita, Yuki Tanaka, et al.
EMBO Reports (2022) Vol. 23, Iss. 5
Open Access | Times Cited: 60
Sota Kuno, Hiroaki Fujita, Yuki Tanaka, et al.
EMBO Reports (2022) Vol. 23, Iss. 5
Open Access | Times Cited: 60
NBR1: The archetypal selective autophagy receptor
Nikoline Lander Rasmussen, Athanasios Kournoutis, Trond Lamark, et al.
The Journal of Cell Biology (2022) Vol. 221, Iss. 11
Open Access | Times Cited: 55
Nikoline Lander Rasmussen, Athanasios Kournoutis, Trond Lamark, et al.
The Journal of Cell Biology (2022) Vol. 221, Iss. 11
Open Access | Times Cited: 55
Damaged mitochondria recruit the effector NEMO to activate NF-κB signaling
Olivia Harding, Elisabeth Holzer, Julia F. Riley, et al.
Molecular Cell (2023) Vol. 83, Iss. 17, pp. 3188-3204.e7
Open Access | Times Cited: 41
Olivia Harding, Elisabeth Holzer, Julia F. Riley, et al.
Molecular Cell (2023) Vol. 83, Iss. 17, pp. 3188-3204.e7
Open Access | Times Cited: 41
Cellular Protein Aggregates: Formation, Biological Effects, and Ways of Elimination
Jun-Hao Wen, Xiang‐Hong He, Ze-Sen Feng, et al.
International Journal of Molecular Sciences (2023) Vol. 24, Iss. 10, pp. 8593-8593
Open Access | Times Cited: 40
Jun-Hao Wen, Xiang‐Hong He, Ze-Sen Feng, et al.
International Journal of Molecular Sciences (2023) Vol. 24, Iss. 10, pp. 8593-8593
Open Access | Times Cited: 40
Aggrephagy at a glance
Bernd Bauer, Sascha Martens, Luca Ferrari
Journal of Cell Science (2023) Vol. 136, Iss. 10
Open Access | Times Cited: 30
Bernd Bauer, Sascha Martens, Luca Ferrari
Journal of Cell Science (2023) Vol. 136, Iss. 10
Open Access | Times Cited: 30
Role of Autophagy Pathway in Parkinson’s Disease and Related Genetic Neurological Disorders
Christos Themistokleous, Enrico Bagnoli, Ramaa Parulekar, et al.
Journal of Molecular Biology (2023) Vol. 435, Iss. 12, pp. 168144-168144
Open Access | Times Cited: 29
Christos Themistokleous, Enrico Bagnoli, Ramaa Parulekar, et al.
Journal of Molecular Biology (2023) Vol. 435, Iss. 12, pp. 168144-168144
Open Access | Times Cited: 29
S-acylation of p62 promotes p62 droplet recruitment into autophagosomes in mammalian autophagy
Xue Huang, Jia Yao, Lu Liu, et al.
Molecular Cell (2023) Vol. 83, Iss. 19, pp. 3485-3501.e11
Open Access | Times Cited: 29
Xue Huang, Jia Yao, Lu Liu, et al.
Molecular Cell (2023) Vol. 83, Iss. 19, pp. 3485-3501.e11
Open Access | Times Cited: 29
TNIP1 inhibits selective autophagy via bipartite interaction with LC3/GABARAP and TAX1BP1
François Le Guerroué, Eric Bunker, William M. Rosencrans, et al.
Molecular Cell (2023) Vol. 83, Iss. 6, pp. 927-941.e8
Open Access | Times Cited: 23
François Le Guerroué, Eric Bunker, William M. Rosencrans, et al.
Molecular Cell (2023) Vol. 83, Iss. 6, pp. 927-941.e8
Open Access | Times Cited: 23
The crosstalk between mitochondrial quality control and metal-dependent cell death
Qi-yuan Zhou, Chao Ren, Jing‐Yan Li, et al.
Cell Death and Disease (2024) Vol. 15, Iss. 4
Open Access | Times Cited: 11
Qi-yuan Zhou, Chao Ren, Jing‐Yan Li, et al.
Cell Death and Disease (2024) Vol. 15, Iss. 4
Open Access | Times Cited: 11
Upregulated pexophagy limits the capacity of selective autophagy
Kyla Germain, Raphaella W. L. So, Laura F. DiGiovanni, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 10
Kyla Germain, Raphaella W. L. So, Laura F. DiGiovanni, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 10