OpenAlex Citation Counts

OpenAlex Citations Logo

OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!

If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.

Requested Article:

β-Lactamases and β-Lactamase Inhibitors in the 21st Century
Catherine L. Tooke, Philip Hinchliffe, Éilís C. Bragginton, et al.
Journal of Molecular Biology (2019) Vol. 431, Iss. 18, pp. 3472-3500
Open Access | Times Cited: 719

Showing 1-25 of 719 citing articles:

Towards the sustainable discovery and development of new antibiotics
Marcus Miethke, Marco Pieroni, Tilmann Weber, et al.
Nature Reviews Chemistry (2021) Vol. 5, Iss. 10, pp. 726-749
Open Access | Times Cited: 811

Molecular mechanisms of antibiotic resistance revisited
Elizabeth M. Darby, Eleftheria Trampari, Pauline Siasat, et al.
Nature Reviews Microbiology (2022) Vol. 21, Iss. 5, pp. 280-295
Open Access | Times Cited: 662

A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex
Margaret M. C. Lam, Ryan R. Wick, Stephen C. Watts, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 638

Epidemiology of β-Lactamase-Producing Pathogens
Karen Bush, Patricia A. Bradford
Clinical Microbiology Reviews (2020) Vol. 33, Iss. 2
Open Access | Times Cited: 610

Recent aspects of the effects of zinc on human health
Christos T. Chasapis, Panagoula-Stamatina A. Ntoupa, Chara Spiliopoulou, et al.
Archives of Toxicology (2020) Vol. 94, Iss. 5, pp. 1443-1460
Closed Access | Times Cited: 509

Acinetobacter baumannii Antibiotic Resistance Mechanisms
Ioannis Kyriakidis, Eleni Vasileiou, Zoi Dorothea Pana, et al.
Pathogens (2021) Vol. 10, Iss. 3, pp. 373-373
Open Access | Times Cited: 423

β-lactam antibiotics: An overview from a medicinal chemistry perspective
Lı́dia Moreira Lima, Bianca Nascimento Monteiro da Silva, Gisele Barbosa, et al.
European Journal of Medicinal Chemistry (2020) Vol. 208, pp. 112829-112829
Closed Access | Times Cited: 387

Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics
Jayaseelan Murugaiyan, P. Anand Kumar, G. Srinivasa Rao, et al.
Antibiotics (2022) Vol. 11, Iss. 2, pp. 200-200
Open Access | Times Cited: 299

Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections
Beatriz Suay‐García, María Teresa Pérez‐Gracia
Antibiotics (2019) Vol. 8, Iss. 3, pp. 122-122
Open Access | Times Cited: 270

Antibiotics in the clinical pipeline in October 2019
Mark S. Butler, David L. Paterson
The Journal of Antibiotics (2020) Vol. 73, Iss. 6, pp. 329-364
Open Access | Times Cited: 237

Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens
Tushar Khare, Uttpal Anand, Abhijit Dey, et al.
Frontiers in Pharmacology (2021) Vol. 12
Open Access | Times Cited: 174

Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design
Guillermo Bahr, Lisandro J. González, Alejandro J. Vila
Chemical Reviews (2021) Vol. 121, Iss. 13, pp. 7957-8094
Open Access | Times Cited: 158

The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies
R Frèdi Langendonk, Daniel R. Neill, Joanne L. Fothergill
Frontiers in Cellular and Infection Microbiology (2021) Vol. 11
Open Access | Times Cited: 154

The importance of antimicrobial resistance in medical mycology
Neil A. R. Gow, Carolyn Johnson, Judith Berman, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 148

Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance
Patrícia G. Lima, José T.A. Oliveira, Jackson L. Amaral, et al.
Life Sciences (2021) Vol. 278, pp. 119647-119647
Open Access | Times Cited: 119

Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies
Zhangyong Si, Wenbin Zheng, Dicky Prananty, et al.
Chemical Science (2021) Vol. 13, Iss. 2, pp. 345-364
Open Access | Times Cited: 115

Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview
Claire Amaris Hobson, Gautier Pierrat, Olivier Tenaillon, et al.
Antimicrobial Agents and Chemotherapy (2022) Vol. 66, Iss. 9
Open Access | Times Cited: 115

β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates
Montserrat Mora-Ochomogo, Christopher T. Lohans
RSC Medicinal Chemistry (2021) Vol. 12, Iss. 10, pp. 1623-1639
Open Access | Times Cited: 106

The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies
Fusheng Zhang, Wei Cheng
Antibiotics (2022) Vol. 11, Iss. 9, pp. 1215-1215
Open Access | Times Cited: 95

Chemical Basis of Combination Therapy to Combat Antibiotic Resistance
Zhangyong Si, Kévin Pethe, Mary B. Chan‐Park
JACS Au (2023) Vol. 3, Iss. 2, pp. 276-292
Open Access | Times Cited: 54

Antibiotic adjuvants: synergistic tool to combat multi-drug resistant pathogens
Vikram Kumar, Nusrath Yasmeen, Aishwarya Pandey, et al.
Frontiers in Cellular and Infection Microbiology (2023) Vol. 13
Open Access | Times Cited: 42

Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies
Ahmed Elfadadny, Rokaia F. Ragab, Maha Alharbi, et al.
Frontiers in Microbiology (2024) Vol. 15
Open Access | Times Cited: 38

A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli
Sina Nasrollahian, Jay P. Graham, Mehrdad Halaji
Frontiers in Cellular and Infection Microbiology (2024) Vol. 14
Open Access | Times Cited: 35

Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase
Christopher Frøhlich, H. Adrian Bunzel, Karol Buda, et al.
Nature Catalysis (2024) Vol. 7, Iss. 5, pp. 499-509
Open Access | Times Cited: 15

Unseen Enemy: Mechanisms of Multidrug Antimicrobial Resistance in Gram-Negative ESKAPE Pathogens
Giedrė Valdonė Sakalauskienė, Lina Malcienė, Edgaras Stankevıčıus, et al.
Antibiotics (2025) Vol. 14, Iss. 1, pp. 63-63
Open Access | Times Cited: 2

Page 1 - Next Page

Scroll to top