
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Pushing the limits of solubility prediction via quality-oriented data selection
Murat Cihan Sorkun, J. M. V. A. Koelman, Süleyman Er
iScience (2020) Vol. 24, Iss. 1, pp. 101961-101961
Open Access | Times Cited: 43
Murat Cihan Sorkun, J. M. V. A. Koelman, Süleyman Er
iScience (2020) Vol. 24, Iss. 1, pp. 101961-101961
Open Access | Times Cited: 43
Showing 1-25 of 43 citing articles:
Protein Design: From the Aspect of Water Solubility and Stability
Rui Qing, Shilei Hao, Eva Smorodina, et al.
Chemical Reviews (2022) Vol. 122, Iss. 18, pp. 14085-14179
Open Access | Times Cited: 134
Rui Qing, Shilei Hao, Eva Smorodina, et al.
Chemical Reviews (2022) Vol. 122, Iss. 18, pp. 14085-14179
Open Access | Times Cited: 134
Machine learning enables interpretable discovery of innovative polymers for gas separation membranes
Jason Yang, Lei Tao, Jinlong He, et al.
Science Advances (2022) Vol. 8, Iss. 29
Open Access | Times Cited: 126
Jason Yang, Lei Tao, Jinlong He, et al.
Science Advances (2022) Vol. 8, Iss. 29
Open Access | Times Cited: 126
Machine learning prediction on the fractional free volume of polymer membranes
Lei Tao, Jinlong He, Tom Arbaugh, et al.
Journal of Membrane Science (2022) Vol. 665, pp. 121131-121131
Open Access | Times Cited: 44
Lei Tao, Jinlong He, Tom Arbaugh, et al.
Journal of Membrane Science (2022) Vol. 665, pp. 121131-121131
Open Access | Times Cited: 44
ChemPlot, a Python Library for Chemical Space Visualization**
Murat Cihan Sorkun, Dajt Mullaj, J. M. V. A. Koelman, et al.
Chemistry - Methods (2022) Vol. 2, Iss. 7
Closed Access | Times Cited: 43
Murat Cihan Sorkun, Dajt Mullaj, J. M. V. A. Koelman, et al.
Chemistry - Methods (2022) Vol. 2, Iss. 7
Closed Access | Times Cited: 43
Prediction of organic compound aqueous solubility using machine learning: a comparison study of descriptor-based and fingerprints-based models
Arash Tayyebi, Ali Alshami, Zeinab Rabiei, et al.
Journal of Cheminformatics (2023) Vol. 15, Iss. 1
Open Access | Times Cited: 21
Arash Tayyebi, Ali Alshami, Zeinab Rabiei, et al.
Journal of Cheminformatics (2023) Vol. 15, Iss. 1
Open Access | Times Cited: 21
Assigning confidence to molecular property prediction
AkshatKumar Nigam, Robert Pollice, Matthew F. D. Hurley, et al.
Expert Opinion on Drug Discovery (2021) Vol. 16, Iss. 9, pp. 1009-1023
Open Access | Times Cited: 51
AkshatKumar Nigam, Robert Pollice, Matthew F. D. Hurley, et al.
Expert Opinion on Drug Discovery (2021) Vol. 16, Iss. 9, pp. 1009-1023
Open Access | Times Cited: 51
Data-driven discovery of small electroactive molecules for energy storage in aqueous redox flow batteries
Qi Zhang, Abhishek Khetan, Elif Sorkun, et al.
Energy storage materials (2022) Vol. 47, pp. 167-177
Open Access | Times Cited: 30
Qi Zhang, Abhishek Khetan, Elif Sorkun, et al.
Energy storage materials (2022) Vol. 47, pp. 167-177
Open Access | Times Cited: 30
Comments on “Artificial intelligence aided pharmaceutical engineering: Development of hybrid machine learning models for prediction of nanomedicine solubility in supercritical solvent”
Abolghasem Jouyban
Journal of Molecular Liquids (2025), pp. 126979-126979
Closed Access
Abolghasem Jouyban
Journal of Molecular Liquids (2025), pp. 126979-126979
Closed Access
Hybrid Semi-mechanistic and Machine Learning Solubility Regression Modeling for Crystallization Process Development
Gustavo Lunardon Quilló, Satyajeet Bhonsale, A. Collas, et al.
Crystal Growth & Design (2025)
Closed Access
Gustavo Lunardon Quilló, Satyajeet Bhonsale, A. Collas, et al.
Crystal Growth & Design (2025)
Closed Access
RedDB, a computational database of electroactive molecules for aqueous redox flow batteries
Elif Sorkun, Qi Zhang, Abhishek Khetan, et al.
Scientific Data (2022) Vol. 9, Iss. 1
Open Access | Times Cited: 25
Elif Sorkun, Qi Zhang, Abhishek Khetan, et al.
Scientific Data (2022) Vol. 9, Iss. 1
Open Access | Times Cited: 25
Explaining molecular properties with natural language
Heta A. Gandhi, Andrew Dickson White
(2022)
Open Access | Times Cited: 21
Heta A. Gandhi, Andrew Dickson White
(2022)
Open Access | Times Cited: 21
A Machine Learning Approach for the Prediction of Aqueous Solubility of Pharmaceuticals: A Comparative Model and Dataset Analysis
Mohammad Amin Ghanavati, Soroush Ahmadi, Sohrab Rohani
Digital Discovery (2024)
Open Access | Times Cited: 3
Mohammad Amin Ghanavati, Soroush Ahmadi, Sohrab Rohani
Digital Discovery (2024)
Open Access | Times Cited: 3
Be aware of overfitting by hyperparameter optimization!
Igor V. Tetko, Ruud van Deursen, Guillaume Godin
Journal of Cheminformatics (2024) Vol. 16, Iss. 1
Open Access | Times Cited: 3
Igor V. Tetko, Ruud van Deursen, Guillaume Godin
Journal of Cheminformatics (2024) Vol. 16, Iss. 1
Open Access | Times Cited: 3
Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like Molecules
Elena M. Tosca, Roberta Bartolucci, Paolo Magni
Pharmaceutics (2021) Vol. 13, Iss. 7, pp. 1101-1101
Open Access | Times Cited: 24
Elena M. Tosca, Roberta Bartolucci, Paolo Magni
Pharmaceutics (2021) Vol. 13, Iss. 7, pp. 1101-1101
Open Access | Times Cited: 24
SOMAS: a platform for data-driven material discovery in redox flow battery development
Peiyuan Gao, Amity Andersen, Jonathan Sepulveda, et al.
Scientific Data (2022) Vol. 9, Iss. 1
Open Access | Times Cited: 17
Peiyuan Gao, Amity Andersen, Jonathan Sepulveda, et al.
Scientific Data (2022) Vol. 9, Iss. 1
Open Access | Times Cited: 17
High-throughput solubility determination for data-driven materials design and discovery in redox flow battery research
Yangang Liang, Heather Job, Ruozhu Feng, et al.
Cell Reports Physical Science (2023) Vol. 4, Iss. 10, pp. 101633-101633
Open Access | Times Cited: 7
Yangang Liang, Heather Job, Ruozhu Feng, et al.
Cell Reports Physical Science (2023) Vol. 4, Iss. 10, pp. 101633-101633
Open Access | Times Cited: 7
Hi-MGT: A hybrid molecule graph transformer for toxicity identification
Zhichao Tan, Youcai Zhao, Tao Zhou, et al.
Journal of Hazardous Materials (2023) Vol. 457, pp. 131808-131808
Closed Access | Times Cited: 6
Zhichao Tan, Youcai Zhao, Tao Zhou, et al.
Journal of Hazardous Materials (2023) Vol. 457, pp. 131808-131808
Closed Access | Times Cited: 6
Leveraging genetic algorithms to maximise the predictive capabilities of the SOAP descriptor
Trent Barnard, Steven Tseng, James P. Darby, et al.
Molecular Systems Design & Engineering (2022) Vol. 8, Iss. 3, pp. 300-315
Open Access | Times Cited: 10
Trent Barnard, Steven Tseng, James P. Darby, et al.
Molecular Systems Design & Engineering (2022) Vol. 8, Iss. 3, pp. 300-315
Open Access | Times Cited: 10
High-Throughput Virtual Screening of Quinones for Aqueous Redox Flow Batteries: Status and Perspectives
Abhishek Khetan
Batteries (2022) Vol. 9, Iss. 1, pp. 24-24
Open Access | Times Cited: 10
Abhishek Khetan
Batteries (2022) Vol. 9, Iss. 1, pp. 24-24
Open Access | Times Cited: 10
Building bioinformatics web applications with Streamlit
Chanin Nantasenamat, Avratanu Biswas, José Manuel Nápoles-Duarte, et al.
Elsevier eBooks (2023), pp. 679-699
Closed Access | Times Cited: 5
Chanin Nantasenamat, Avratanu Biswas, José Manuel Nápoles-Duarte, et al.
Elsevier eBooks (2023), pp. 679-699
Closed Access | Times Cited: 5
Designing solvent systems using self-evolving solubility databases and graph neural networks
Yeonjoon Kim, Hojin Jung, Sabari Kumar, et al.
Chemical Science (2023) Vol. 15, Iss. 3, pp. 923-939
Open Access | Times Cited: 5
Yeonjoon Kim, Hojin Jung, Sabari Kumar, et al.
Chemical Science (2023) Vol. 15, Iss. 3, pp. 923-939
Open Access | Times Cited: 5
Predicting the Solubility of Inorganic Ion Pairs in Water
Tasnim Rahman, Enric Petrus, Mireia Segado, et al.
Angewandte Chemie International Edition (2022) Vol. 61, Iss. 19
Open Access | Times Cited: 9
Tasnim Rahman, Enric Petrus, Mireia Segado, et al.
Angewandte Chemie International Edition (2022) Vol. 61, Iss. 19
Open Access | Times Cited: 9
Predicting small molecules solubility on endpoint devices using deep ensemble neural networks
Mayk Caldas Ramos, Andrew Dickson White
Digital Discovery (2024) Vol. 3, Iss. 4, pp. 786-795
Open Access | Times Cited: 1
Mayk Caldas Ramos, Andrew Dickson White
Digital Discovery (2024) Vol. 3, Iss. 4, pp. 786-795
Open Access | Times Cited: 1
In silico drug discovery: a machine learning-driven systematic review
Sema Atasever
Medicinal Chemistry Research (2024)
Closed Access | Times Cited: 1
Sema Atasever
Medicinal Chemistry Research (2024)
Closed Access | Times Cited: 1
Predicting sulfanilamide solubility in mixed solvents: A comparative analysis of computational models
Prashanth Asadi, Kalyani Kodide, Jyothi Thati, et al.
Fluid Phase Equilibria (2023) Vol. 577, pp. 113966-113966
Closed Access | Times Cited: 3
Prashanth Asadi, Kalyani Kodide, Jyothi Thati, et al.
Fluid Phase Equilibria (2023) Vol. 577, pp. 113966-113966
Closed Access | Times Cited: 3