
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Deep transfer learning based photonics sensor for assessment of seed-quality
Puneet Singh, Bhavya Tiwari, Abhishek Kumar, et al.
Computers and Electronics in Agriculture (2022) Vol. 196, pp. 106891-106891
Closed Access | Times Cited: 18
Puneet Singh, Bhavya Tiwari, Abhishek Kumar, et al.
Computers and Electronics in Agriculture (2022) Vol. 196, pp. 106891-106891
Closed Access | Times Cited: 18
Showing 18 citing articles:
Physiological Alterations and Nondestructive Test Methods of Crop Seed Vigor: A Comprehensive Review
Muye Xing, Long Yuan, Qingyan Wang, et al.
Agriculture (2023) Vol. 13, Iss. 3, pp. 527-527
Open Access | Times Cited: 18
Muye Xing, Long Yuan, Qingyan Wang, et al.
Agriculture (2023) Vol. 13, Iss. 3, pp. 527-527
Open Access | Times Cited: 18
A method for detecting the quality of cotton seeds based on an improved ResNet50 model
Xinwu Du, Laiqiang Si, Pengfei Li, et al.
PLoS ONE (2023) Vol. 18, Iss. 2, pp. e0273057-e0273057
Open Access | Times Cited: 14
Xinwu Du, Laiqiang Si, Pengfei Li, et al.
PLoS ONE (2023) Vol. 18, Iss. 2, pp. e0273057-e0273057
Open Access | Times Cited: 14
Enhancing Water Safety: Biospeckle Laser Approach for Bacterial Detection
Melina Nisenbaum, Marcelo N. Guzmán, María Laura Patat, et al.
Sensing and Imaging (2025) Vol. 26, Iss. 1
Closed Access
Melina Nisenbaum, Marcelo N. Guzmán, María Laura Patat, et al.
Sensing and Imaging (2025) Vol. 26, Iss. 1
Closed Access
Classification of seed corn ears based on custom lightweight convolutional neural network and improved training strategies
Xiang Ma, Yonglei Li, Lipengcheng Wan, et al.
Engineering Applications of Artificial Intelligence (2023) Vol. 120, pp. 105936-105936
Closed Access | Times Cited: 9
Xiang Ma, Yonglei Li, Lipengcheng Wan, et al.
Engineering Applications of Artificial Intelligence (2023) Vol. 120, pp. 105936-105936
Closed Access | Times Cited: 9
Imbibition and Germination of Seeds with Economic and Ecological Interest: Physical and Biochemical Factors Involved
Marcelo F. Pompelli, Alfredo Jarma‐Orozco, Luis Alfonso Rodríguéz-Páez
Sustainability (2023) Vol. 15, Iss. 6, pp. 5394-5394
Open Access | Times Cited: 9
Marcelo F. Pompelli, Alfredo Jarma‐Orozco, Luis Alfonso Rodríguéz-Páez
Sustainability (2023) Vol. 15, Iss. 6, pp. 5394-5394
Open Access | Times Cited: 9
UDATNN: A modeling scheme integrating unsupervised domain adversarial learning and tri-training strategy for variety recognition of maize seeds with domain shift
Shengqi Yan, Qibing Zhu, Min Huang, et al.
Computers and Electronics in Agriculture (2023) Vol. 213, pp. 108237-108237
Closed Access | Times Cited: 7
Shengqi Yan, Qibing Zhu, Min Huang, et al.
Computers and Electronics in Agriculture (2023) Vol. 213, pp. 108237-108237
Closed Access | Times Cited: 7
Deep Learning-Based Robust Analysis of Laser Bio-Speckle Data for Detection of Fungal-Infected Soybean Seeds
Nikhil Kaler, Vimal Bhatia, Amit Kumar Mishra
IEEE Access (2023) Vol. 11, pp. 89331-89348
Open Access | Times Cited: 5
Nikhil Kaler, Vimal Bhatia, Amit Kumar Mishra
IEEE Access (2023) Vol. 11, pp. 89331-89348
Open Access | Times Cited: 5
An end-to-end seed vigor prediction model for imbalanced samples using hyperspectral image
Tiantian Pang, Chengcheng Chen, Ronghao Fu, et al.
Frontiers in Plant Science (2023) Vol. 14
Open Access | Times Cited: 5
Tiantian Pang, Chengcheng Chen, Ronghao Fu, et al.
Frontiers in Plant Science (2023) Vol. 14
Open Access | Times Cited: 5
Machine Learning for Smart Agriculture: A Comprehensive Survey
M. Rezwanul Mahmood, M. A. Matin, Sotirios K. Goudos, et al.
IEEE Transactions on Artificial Intelligence (2023) Vol. 5, Iss. 6, pp. 2568-2588
Closed Access | Times Cited: 4
M. Rezwanul Mahmood, M. A. Matin, Sotirios K. Goudos, et al.
IEEE Transactions on Artificial Intelligence (2023) Vol. 5, Iss. 6, pp. 2568-2588
Closed Access | Times Cited: 4
Trazabilidad en el sector agrícola: una revisión para el periodo 2017 – 2022
Andrés Mauricio Hualpa Zúñiga, Jorge Eliécer Rangel Díaz
Agronomía Mesoamericana (2023), pp. 51828-51828
Open Access | Times Cited: 2
Andrés Mauricio Hualpa Zúñiga, Jorge Eliécer Rangel Díaz
Agronomía Mesoamericana (2023), pp. 51828-51828
Open Access | Times Cited: 2
AIseed Simulation: A seed simulation sorting software for rapidly determining seed processing procedures and parameters
Yanan Xu, Weifeng Wu, Keling Tu, et al.
Computers and Electronics in Agriculture (2024) Vol. 221, pp. 108971-108971
Closed Access
Yanan Xu, Weifeng Wu, Keling Tu, et al.
Computers and Electronics in Agriculture (2024) Vol. 221, pp. 108971-108971
Closed Access
Artificial intelligence applied to the classification of greenish seeds and prediction of physiological quality in soybean
Victória Carneiro Bastos de Oliveira, Nara Oliveira Silva Souza, Márcio da Silva Arantes, et al.
Ciência e Agrotecnologia (2024) Vol. 48
Open Access
Victória Carneiro Bastos de Oliveira, Nara Oliveira Silva Souza, Márcio da Silva Arantes, et al.
Ciência e Agrotecnologia (2024) Vol. 48
Open Access
Analysis of Seed Vigor Using the Biospeckle Laser Technique
Roberto Alves Braga, José Luís Contado, Karina Renostro Ducatti, et al.
AgriEngineering (2024) Vol. 7, Iss. 1, pp. 3-3
Open Access
Roberto Alves Braga, José Luís Contado, Karina Renostro Ducatti, et al.
AgriEngineering (2024) Vol. 7, Iss. 1, pp. 3-3
Open Access
Detection of Broken Hongshan Buckwheat Seeds Based on Improved YOLOv5s Model
Xin Li, Wendong Niu, Yinxing Yan, et al.
Agronomy (2023) Vol. 14, Iss. 1, pp. 37-37
Open Access | Times Cited: 1
Xin Li, Wendong Niu, Yinxing Yan, et al.
Agronomy (2023) Vol. 14, Iss. 1, pp. 37-37
Open Access | Times Cited: 1
Analytical performance and “receiver operating characteristic curve” analysis of resazurin assay for seed-viability estimation in flax
А. С. Попова, А А Желтова, В. Г. Зайцев
Journal of Crop Improvement (2023) Vol. 37, Iss. 6, pp. 821-833
Closed Access
А. С. Попова, А А Желтова, В. Г. Зайцев
Journal of Crop Improvement (2023) Vol. 37, Iss. 6, pp. 821-833
Closed Access
Oat grains classification using deep learning
Diego Patrício, Carlos Ré Signor, Nádia Canali Lângaro, et al.
Revista Brasileira de Computação Aplicada (2023) Vol. 15, Iss. 1, pp. 48-58
Open Access
Diego Patrício, Carlos Ré Signor, Nádia Canali Lângaro, et al.
Revista Brasileira de Computação Aplicada (2023) Vol. 15, Iss. 1, pp. 48-58
Open Access
Contribuciones a la Aplicación de Machine Learning en Escenarios Novedosos de Tiempo Real
Stanislav Vakaruk
(2023)
Open Access
Stanislav Vakaruk
(2023)
Open Access
Early Disease Classification of Mango Leaves Using Neural Network
Swathi Sambangi, Srinivas Talasila, G. Raviteja, et al.
(2023), pp. 1-6
Closed Access
Swathi Sambangi, Srinivas Talasila, G. Raviteja, et al.
(2023), pp. 1-6
Closed Access