
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Small-Molecule Chemical Probe Rescues Cells from Mono-ADP-Ribosyltransferase ARTD10/PARP10-Induced Apoptosis and Sensitizes Cancer Cells to DNA Damage
Harikanth Venkannagari, Patricia Verheugd, Jarkko Koivunen, et al.
Cell chemical biology (2016) Vol. 23, Iss. 10, pp. 1251-1260
Open Access | Times Cited: 63
Harikanth Venkannagari, Patricia Verheugd, Jarkko Koivunen, et al.
Cell chemical biology (2016) Vol. 23, Iss. 10, pp. 1251-1260
Open Access | Times Cited: 63
Showing 1-25 of 63 citing articles:
ADP‐ribosyltransferases, an update on function and nomenclature
Bernhard Lüscher, Ivan Ahel, Matthias Altmeyer, et al.
FEBS Journal (2021) Vol. 289, Iss. 23, pp. 7399-7410
Open Access | Times Cited: 234
Bernhard Lüscher, Ivan Ahel, Matthias Altmeyer, et al.
FEBS Journal (2021) Vol. 289, Iss. 23, pp. 7399-7410
Open Access | Times Cited: 234
A Focused DNA-Encoded Chemical Library for the Discovery of Inhibitors of NAD+-Dependent Enzymes
Lik Hang Yuen, Srikanta Dana, Yu Liu, et al.
Journal of the American Chemical Society (2019) Vol. 141, Iss. 13, pp. 5169-5181
Closed Access | Times Cited: 98
Lik Hang Yuen, Srikanta Dana, Yu Liu, et al.
Journal of the American Chemical Society (2019) Vol. 141, Iss. 13, pp. 5169-5181
Closed Access | Times Cited: 98
The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism
Magdolna Szántó, Péter Bai
Genes & Development (2020) Vol. 34, Iss. 5-6, pp. 321-340
Open Access | Times Cited: 71
Magdolna Szántó, Péter Bai
Genes & Development (2020) Vol. 34, Iss. 5-6, pp. 321-340
Open Access | Times Cited: 71
MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential
Sridevi Challa, MiKayla S Stokes, W. Lee Kraus
Cells (2021) Vol. 10, Iss. 2, pp. 313-313
Open Access | Times Cited: 56
Sridevi Challa, MiKayla S Stokes, W. Lee Kraus
Cells (2021) Vol. 10, Iss. 2, pp. 313-313
Open Access | Times Cited: 56
A Genome-wide CRISPR Screen Identifies ZCCHC14 as a Host Factor Required for Hepatitis B Surface Antigen Production
Anastasia Hyrina, Christopher T. Jones, Darlene Chen, et al.
Cell Reports (2019) Vol. 29, Iss. 10, pp. 2970-2978.e6
Open Access | Times Cited: 57
Anastasia Hyrina, Christopher T. Jones, Darlene Chen, et al.
Cell Reports (2019) Vol. 29, Iss. 10, pp. 2970-2978.e6
Open Access | Times Cited: 57
Mono-ADP-ribosylation by PARP10 and PARP14 in genome stability
Ashna Dhoonmoon, Claudia M. Nicolae
NAR Cancer (2023) Vol. 5, Iss. 1
Open Access | Times Cited: 18
Ashna Dhoonmoon, Claudia M. Nicolae
NAR Cancer (2023) Vol. 5, Iss. 1
Open Access | Times Cited: 18
A Potent and Selective PARP11 Inhibitor Suggests Coupling between Cellular Localization and Catalytic Activity
Ilsa T. Kirby, Ana Kojic, Moriah R. Arnold, et al.
Cell chemical biology (2018) Vol. 25, Iss. 12, pp. 1547-1553.e12
Open Access | Times Cited: 57
Ilsa T. Kirby, Ana Kojic, Moriah R. Arnold, et al.
Cell chemical biology (2018) Vol. 25, Iss. 12, pp. 1547-1553.e12
Open Access | Times Cited: 57
Highly Potent and Isoform Selective Dual Site Binding Tankyrase/Wnt Signaling Inhibitors That Increase Cellular Glucose Uptake and Have Antiproliferative Activity
Amit Nathubhai, T. Haikarainen, Jarkko Koivunen, et al.
Journal of Medicinal Chemistry (2016) Vol. 60, Iss. 2, pp. 814-820
Open Access | Times Cited: 52
Amit Nathubhai, T. Haikarainen, Jarkko Koivunen, et al.
Journal of Medicinal Chemistry (2016) Vol. 60, Iss. 2, pp. 814-820
Open Access | Times Cited: 52
Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation
Alvin Lu, Ryan Abo, Yue Ren, et al.
Biochemical Pharmacology (2019) Vol. 167, pp. 97-106
Open Access | Times Cited: 46
Alvin Lu, Ryan Abo, Yue Ren, et al.
Biochemical Pharmacology (2019) Vol. 167, pp. 97-106
Open Access | Times Cited: 46
Medicinal Chemistry Perspective on Targeting Mono-ADP-Ribosylating PARPs with Small Molecules
Maria Giulia Nizi, Mirko M. Maksimainen, L. Lehtiö, et al.
Journal of Medicinal Chemistry (2022) Vol. 65, Iss. 11, pp. 7532-7560
Open Access | Times Cited: 24
Maria Giulia Nizi, Mirko M. Maksimainen, L. Lehtiö, et al.
Journal of Medicinal Chemistry (2022) Vol. 65, Iss. 11, pp. 7532-7560
Open Access | Times Cited: 24
[1,2,4]Triazolo[3,4-b]benzothiazole Scaffold as Versatile Nicotinamide Mimic Allowing Nanomolar Inhibition of Different PARP Enzymes
Sudarshan Murthy, Maria Giulia Nizi, Mirko M. Maksimainen, et al.
Journal of Medicinal Chemistry (2023) Vol. 66, Iss. 2, pp. 1301-1320
Open Access | Times Cited: 14
Sudarshan Murthy, Maria Giulia Nizi, Mirko M. Maksimainen, et al.
Journal of Medicinal Chemistry (2023) Vol. 66, Iss. 2, pp. 1301-1320
Open Access | Times Cited: 14
Mono-ADP-ribosylation by PARP10 inhibits Chikungunya virus nsP2 proteolytic activity and viral replication
Sarah Krieg, Fabian Pott, Laura Potthoff, et al.
Cellular and Molecular Life Sciences (2023) Vol. 80, Iss. 3
Open Access | Times Cited: 14
Sarah Krieg, Fabian Pott, Laura Potthoff, et al.
Cellular and Molecular Life Sciences (2023) Vol. 80, Iss. 3
Open Access | Times Cited: 14
Interferon-induced PARP14-mediated ADP-ribosylation in p62 bodies requires the ubiquitin-proteasome system
Rameez Raja, Banhi Biswas, Rachy Abraham, et al.
The EMBO Journal (2025)
Open Access
Rameez Raja, Banhi Biswas, Rachy Abraham, et al.
The EMBO Journal (2025)
Open Access
Small Molecule Microarray Based Discovery of PARP14 Inhibitors
Bo Peng, A.G. Thorsell, T. Karlberg, et al.
Angewandte Chemie International Edition (2016) Vol. 56, Iss. 1, pp. 248-253
Closed Access | Times Cited: 43
Bo Peng, A.G. Thorsell, T. Karlberg, et al.
Angewandte Chemie International Edition (2016) Vol. 56, Iss. 1, pp. 248-253
Closed Access | Times Cited: 43
Design, synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl)transferases PARP10 and PARP14
Jacob Holechek, Robert Lease, A.G. Thorsell, et al.
Bioorganic & Medicinal Chemistry Letters (2018) Vol. 28, Iss. 11, pp. 2050-2054
Closed Access | Times Cited: 42
Jacob Holechek, Robert Lease, A.G. Thorsell, et al.
Bioorganic & Medicinal Chemistry Letters (2018) Vol. 28, Iss. 11, pp. 2050-2054
Closed Access | Times Cited: 42
A molecular toolbox for ADP-ribosyl binding proteins
Sven T. Sowa, Albert Galera‐Prat, Sarah Wazir, et al.
Cell Reports Methods (2021) Vol. 1, Iss. 8, pp. 100121-100121
Open Access | Times Cited: 32
Sven T. Sowa, Albert Galera‐Prat, Sarah Wazir, et al.
Cell Reports Methods (2021) Vol. 1, Iss. 8, pp. 100121-100121
Open Access | Times Cited: 32
ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives
Giuseppe Manco, Giuseppina Lacerra, Elena Porzio, et al.
Biomolecules (2022) Vol. 12, Iss. 3, pp. 443-443
Open Access | Times Cited: 21
Giuseppe Manco, Giuseppina Lacerra, Elena Porzio, et al.
Biomolecules (2022) Vol. 12, Iss. 3, pp. 443-443
Open Access | Times Cited: 21
Preclinical Lead Optimization of a 1,2,4-Triazole Based Tankyrase Inhibitor
Jo Waaler, Ruben G.G. Leenders, Sven T. Sowa, et al.
Journal of Medicinal Chemistry (2020) Vol. 63, Iss. 13, pp. 6834-6846
Open Access | Times Cited: 32
Jo Waaler, Ruben G.G. Leenders, Sven T. Sowa, et al.
Journal of Medicinal Chemistry (2020) Vol. 63, Iss. 13, pp. 6834-6846
Open Access | Times Cited: 32
Mono(ADP-ribosyl)ation Enzymes and NAD+ Metabolism: A Focus on Diseases and Therapeutic Perspectives
Palmiro Poltronieri, Angela Celetti, Luca Palazzo
Cells (2021) Vol. 10, Iss. 1, pp. 128-128
Open Access | Times Cited: 24
Palmiro Poltronieri, Angela Celetti, Luca Palazzo
Cells (2021) Vol. 10, Iss. 1, pp. 128-128
Open Access | Times Cited: 24
Protein and RNA ADP-ribosylation detection is influenced by sample preparation and reagents used
Lisa Weixler, Nonso Josephat Ikenga, Jim Voorneveld, et al.
Life Science Alliance (2022) Vol. 6, Iss. 1, pp. e202201455-e202201455
Open Access | Times Cited: 18
Lisa Weixler, Nonso Josephat Ikenga, Jim Voorneveld, et al.
Life Science Alliance (2022) Vol. 6, Iss. 1, pp. e202201455-e202201455
Open Access | Times Cited: 18
Synthetically accessible de novo design using reaction vectors: Application to PARP1 inhibitors**
Gian Marco Ghiandoni, Stuart R. Flanagan, Michael J. Bodkin, et al.
Molecular Informatics (2024) Vol. 43, Iss. 4
Open Access | Times Cited: 3
Gian Marco Ghiandoni, Stuart R. Flanagan, Michael J. Bodkin, et al.
Molecular Informatics (2024) Vol. 43, Iss. 4
Open Access | Times Cited: 3
4-(Phenoxy) and 4-(benzyloxy)benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10
Sudarshan Murthy, Jenny Desantis, Patricia Verheugd, et al.
European Journal of Medicinal Chemistry (2018) Vol. 156, pp. 93-102
Open Access | Times Cited: 27
Sudarshan Murthy, Jenny Desantis, Patricia Verheugd, et al.
European Journal of Medicinal Chemistry (2018) Vol. 156, pp. 93-102
Open Access | Times Cited: 27
Rational Design of Cell-Active Inhibitors of PARP10
Rory K. Morgan, Ilsa T. Kirby, Anke Vermehren‐Schmaedick, et al.
ACS Medicinal Chemistry Letters (2018) Vol. 10, Iss. 1, pp. 74-79
Open Access | Times Cited: 27
Rory K. Morgan, Ilsa T. Kirby, Anke Vermehren‐Schmaedick, et al.
ACS Medicinal Chemistry Letters (2018) Vol. 10, Iss. 1, pp. 74-79
Open Access | Times Cited: 27
Small-Molecule Inhibitors of PARPs: From Tools for Investigating ADP-Ribosylation to Therapeutics
Ilsa T. Kirby, Michael S. Cohen
Current topics in microbiology and immunology (2018), pp. 211-231
Closed Access | Times Cited: 25
Ilsa T. Kirby, Michael S. Cohen
Current topics in microbiology and immunology (2018), pp. 211-231
Closed Access | Times Cited: 25
In Vitro and Cellular Probes to Study PARP Enzyme Target Engagement
Tim J. Wigle, Danielle J. Blackwell, Laurie B. Schenkel, et al.
Cell chemical biology (2020) Vol. 27, Iss. 7, pp. 877-887.e14
Open Access | Times Cited: 22
Tim J. Wigle, Danielle J. Blackwell, Laurie B. Schenkel, et al.
Cell chemical biology (2020) Vol. 27, Iss. 7, pp. 877-887.e14
Open Access | Times Cited: 22