OpenAlex Citation Counts

OpenAlex Citations Logo

OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!

If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.

Requested Article:

Inter-domain communication in SARS-CoV-2 spike proteins controls protease-triggered cell entry
Enya Qing, Pengfei Li, Laura Cooper, et al.
Cell Reports (2022) Vol. 39, Iss. 5, pp. 110786-110786
Open Access | Times Cited: 49

Showing 1-25 of 49 citing articles:

SARS-CoV-2 variant biology: immune escape, transmission and fitness
Alessandro M. Carabelli, Thomas P. Peacock, Lucy Thorne, et al.
Nature Reviews Microbiology (2023)
Open Access | Times Cited: 886

ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies
Jun Siong Low, Josipa Jerak, M. Alejandra Tortorici, et al.
Science (2022) Vol. 377, Iss. 6607, pp. 735-742
Open Access | Times Cited: 138

Sialoglycan binding triggers spike opening in a human coronavirus
Matti F. Pronker, Robert Creutznacher, Ieva Drulyte, et al.
Nature (2023) Vol. 624, Iss. 7990, pp. 201-206
Open Access | Times Cited: 45

SARS-CoV-2 and innate immunity: the good, the bad, and the “goldilocks”
Benjamín L. Sievers, Mark T. K. Cheng, Kata Csiba, et al.
Cellular and Molecular Immunology (2023) Vol. 21, Iss. 2, pp. 171-183
Open Access | Times Cited: 44

SARS-CoV-2 spike N-terminal domain modulates TMPRSS2-dependent viral entry and fusogenicity
Bo Meng, Rawlings Datir, Jinwook Choi, et al.
Cell Reports (2022) Vol. 40, Iss. 7, pp. 111220-111220
Open Access | Times Cited: 40

The past, current and future epidemiological dynamic of SARS-CoV-2
François Balloux, Cedric C.S. Tan, Leo Swadling, et al.
Oxford Open Immunology (2022) Vol. 3, Iss. 1
Open Access | Times Cited: 37

High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike
Timothy J.C. Tan, Zongjun Mou, Ruipeng Lei, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 21

Single-molecule imaging reveals allosteric stimulation of SARS-CoV-2 spike receptor binding domain by host sialic acid
Marco A. Díaz-Salinas, Aastha Jain, Natasha D. Durham, et al.
Science Advances (2024) Vol. 10, Iss. 29
Open Access | Times Cited: 8

Evolutionary remodelling of N‐terminal domain loops fine‐tunes SARS‐CoV‐2 spike
Diego Cantoni, Matthew J Murray, Mphatso D. Kalemera, et al.
EMBO Reports (2022) Vol. 23, Iss. 10
Open Access | Times Cited: 31

Receptor-Binding Domain (RBD) Antibodies Contribute More to SARS-CoV-2 Neutralization When Target Cells Express High Levels of ACE2
Ariana Ghez Farrell, Bernadeta Dadonaite, Allison J. Greaney, et al.
Viruses (2022) Vol. 14, Iss. 9, pp. 2061-2061
Open Access | Times Cited: 26

Probing the biophysical constraints of SARS-CoV-2 spike N-terminal domain using deep mutational scanning
Wenhao O. Ouyang, Timothy J.C. Tan, Ruipeng Lei, et al.
Science Advances (2022) Vol. 8, Iss. 47
Open Access | Times Cited: 26

Variation in structural motifs within SARS-related coronavirus spike proteins
Francesca R. Hills, Alice-Roza Eruera, James Hodgkinson-Bean, et al.
PLoS Pathogens (2024) Vol. 20, Iss. 5, pp. e1012158-e1012158
Open Access | Times Cited: 3

Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins
Daniele Focosi, Pietro Giorgio Spezia, Fabrizio Maggi
Vaccines (2024) Vol. 12, Iss. 8, pp. 887-887
Open Access | Times Cited: 3

Antibody-mediated immunity to SARS-CoV-2 spike
John M. Errico, Lucas J. Adams, Daved H. Fremont
Advances in immunology (2022), pp. 1-69
Open Access | Times Cited: 20

ACE2-Independent Bat Sarbecovirus Entry and Replication in Human and Bat Cells
Hua Guo, Ang Li, Tian-Yi Dong, et al.
mBio (2022) Vol. 13, Iss. 6
Open Access | Times Cited: 20

Defining neutralization and allostery by antibodies against COVID-19 variants
Nikhil Kumar Tulsian, Raghuvamsi Venkata Palur, Xinlei Qian, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 9

A broadly reactive antibody targeting the N-terminal domain of SARS-CoV-2 spike confers Fc-mediated protection
Lucas J. Adams, Laura A. VanBlargan, Zhuoming Liu, et al.
Cell Reports Medicine (2023) Vol. 4, Iss. 12, pp. 101305-101305
Open Access | Times Cited: 8

Adaptation of SARS-CoV-2 to ACE2 H353K mice reveals new spike residues that drive mouse infection
Kun Li, Abhishek Verma, Pengfei Li, et al.
Journal of Virology (2024) Vol. 98, Iss. 1
Open Access | Times Cited: 2

The accomplices: Heparan sulfates and N-glycans foster SARS-CoV-2 spike:ACE2 receptor binding and virus priming
Giulia Paiardi, Matheus Ferraz, Marco Rusnati, et al.
Proceedings of the National Academy of Sciences (2024) Vol. 121, Iss. 43
Open Access | Times Cited: 2

Design of customized coronavirus receptors
Peng Liu, Meiling Huang, Hua Guo, et al.
Nature (2024) Vol. 635, Iss. 8040, pp. 978-986
Closed Access | Times Cited: 2

Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathways for SARS-CoV-2 Entry
Anjali Sengar, Marcos Cervantes, Sai T. Bondalapati, et al.
Journal of Virology (2023) Vol. 97, Iss. 5
Open Access | Times Cited: 6

A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs
Debajit Dey, Enya Qing, Yanan He, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 6

The Glycan-Binding Trait of the Sarbecovirus Spike N-Terminal Domain Reveals an Evolutionary Footprint
Hua Guo, Ang Li, Haofeng Lin, et al.
Journal of Virology (2022) Vol. 96, Iss. 15
Open Access | Times Cited: 11

Page 1 - Next Page

Scroll to top