
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Biomolecular Condensates and Cancer
Ann Boija, Isaac A. Klein, Richard A. Young
Cancer Cell (2021) Vol. 39, Iss. 2, pp. 174-192
Open Access | Times Cited: 235
Ann Boija, Isaac A. Klein, Richard A. Young
Cancer Cell (2021) Vol. 39, Iss. 2, pp. 174-192
Open Access | Times Cited: 235
Showing 1-25 of 235 citing articles:
Phase separation drives aberrant chromatin looping and cancer development
Jeong Hyun Ahn, Eric S. Davis, Timothy A. Daugird, et al.
Nature (2021) Vol. 595, Iss. 7868, pp. 591-595
Open Access | Times Cited: 328
Jeong Hyun Ahn, Eric S. Davis, Timothy A. Daugird, et al.
Nature (2021) Vol. 595, Iss. 7868, pp. 591-595
Open Access | Times Cited: 328
A guide to membraneless organelles and their various roles in gene regulation
Tetsuro Hirose, Kensuke Ninomiya, Shinichi Nakagawa, et al.
Nature Reviews Molecular Cell Biology (2022) Vol. 24, Iss. 4, pp. 288-304
Closed Access | Times Cited: 285
Tetsuro Hirose, Kensuke Ninomiya, Shinichi Nakagawa, et al.
Nature Reviews Molecular Cell Biology (2022) Vol. 24, Iss. 4, pp. 288-304
Closed Access | Times Cited: 285
Liquid–liquid phase separation drives cellular function and dysfunction in cancer
Sohum Mehta, Jin Zhang
Nature reviews. Cancer (2022) Vol. 22, Iss. 4, pp. 239-252
Open Access | Times Cited: 246
Sohum Mehta, Jin Zhang
Nature reviews. Cancer (2022) Vol. 22, Iss. 4, pp. 239-252
Open Access | Times Cited: 246
Modulating biomolecular condensates: a novel approach to drug discovery
Diana M. Mitrea, Matthäus Mittasch, Beatriz Ferreira Gomes, et al.
Nature Reviews Drug Discovery (2022) Vol. 21, Iss. 11, pp. 841-862
Open Access | Times Cited: 225
Diana M. Mitrea, Matthäus Mittasch, Beatriz Ferreira Gomes, et al.
Nature Reviews Drug Discovery (2022) Vol. 21, Iss. 11, pp. 841-862
Open Access | Times Cited: 225
N6-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation
Yuanming Cheng, Wei Xie, Brian F. Pickering, et al.
Cancer Cell (2021) Vol. 39, Iss. 7, pp. 958-972.e8
Open Access | Times Cited: 180
Yuanming Cheng, Wei Xie, Brian F. Pickering, et al.
Cancer Cell (2021) Vol. 39, Iss. 7, pp. 958-972.e8
Open Access | Times Cited: 180
Phase separation of FSP1 promotes ferroptosis
Toshitaka Nakamura, Clara Hipp, André Mourão, et al.
Nature (2023) Vol. 619, Iss. 7969, pp. 371-377
Open Access | Times Cited: 165
Toshitaka Nakamura, Clara Hipp, André Mourão, et al.
Nature (2023) Vol. 619, Iss. 7969, pp. 371-377
Open Access | Times Cited: 165
Liquid–liquid phase separation in tumor biology
Xuhui Tong, Rong Tang, Jin Xu, et al.
Signal Transduction and Targeted Therapy (2022) Vol. 7, Iss. 1
Open Access | Times Cited: 135
Xuhui Tong, Rong Tang, Jin Xu, et al.
Signal Transduction and Targeted Therapy (2022) Vol. 7, Iss. 1
Open Access | Times Cited: 135
Learning the chemical grammar of biomolecular condensates
Henry R. Kilgore, Richard A. Young
Nature Chemical Biology (2022) Vol. 18, Iss. 12, pp. 1298-1306
Open Access | Times Cited: 115
Henry R. Kilgore, Richard A. Young
Nature Chemical Biology (2022) Vol. 18, Iss. 12, pp. 1298-1306
Open Access | Times Cited: 115
Phase Separation Mediates NUP98 Fusion Oncoprotein Leukemic Transformation
Bappaditya Chandra, Nicole L. Michmerhuizen, Hazheen K. Shirnekhi, et al.
Cancer Discovery (2021) Vol. 12, Iss. 4, pp. 1152-1169
Open Access | Times Cited: 111
Bappaditya Chandra, Nicole L. Michmerhuizen, Hazheen K. Shirnekhi, et al.
Cancer Discovery (2021) Vol. 12, Iss. 4, pp. 1152-1169
Open Access | Times Cited: 111
Targeting androgen receptor phase separation to overcome antiandrogen resistance
Jingjing Xie, Hao He, Wenna Kong, et al.
Nature Chemical Biology (2022) Vol. 18, Iss. 12, pp. 1341-1350
Closed Access | Times Cited: 92
Jingjing Xie, Hao He, Wenna Kong, et al.
Nature Chemical Biology (2022) Vol. 18, Iss. 12, pp. 1341-1350
Closed Access | Times Cited: 92
FuzDrop on AlphaFold: visualizing the sequence-dependent propensity of liquid–liquid phase separation and aggregation of proteins
András Hatos, Silvio C. E. Tosatto, Michele Vendruscolo, et al.
Nucleic Acids Research (2022) Vol. 50, Iss. W1, pp. W337-W344
Open Access | Times Cited: 91
András Hatos, Silvio C. E. Tosatto, Michele Vendruscolo, et al.
Nucleic Acids Research (2022) Vol. 50, Iss. W1, pp. W337-W344
Open Access | Times Cited: 91
Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer
Hongbo Wang, Qinghai Meng, Jinjun Qian, et al.
Pharmacology & Therapeutics (2022) Vol. 234, pp. 108123-108123
Closed Access | Times Cited: 81
Hongbo Wang, Qinghai Meng, Jinjun Qian, et al.
Pharmacology & Therapeutics (2022) Vol. 234, pp. 108123-108123
Closed Access | Times Cited: 81
Game changers in science and technology - now and beyond
Ulrich A. K. Betz, Loukik Arora, R.A. Assal, et al.
Technological Forecasting and Social Change (2023) Vol. 193, pp. 122588-122588
Open Access | Times Cited: 71
Ulrich A. K. Betz, Loukik Arora, R.A. Assal, et al.
Technological Forecasting and Social Change (2023) Vol. 193, pp. 122588-122588
Open Access | Times Cited: 71
Disrupting the phase separation of KAT8–IRF1 diminishes PD-L1 expression and promotes antitumor immunity
Yuanzhong Wu, Liwen Zhou, Yezi Zou, et al.
Nature Cancer (2023) Vol. 4, Iss. 3, pp. 382-400
Open Access | Times Cited: 58
Yuanzhong Wu, Liwen Zhou, Yezi Zou, et al.
Nature Cancer (2023) Vol. 4, Iss. 3, pp. 382-400
Open Access | Times Cited: 58
Phase Separation in Biology and Disease; Current Perspectives and Open Questions
Steven Boeynaems, Shasha Chong, Jörg Gsponer, et al.
Journal of Molecular Biology (2023) Vol. 435, Iss. 5, pp. 167971-167971
Open Access | Times Cited: 52
Steven Boeynaems, Shasha Chong, Jörg Gsponer, et al.
Journal of Molecular Biology (2023) Vol. 435, Iss. 5, pp. 167971-167971
Open Access | Times Cited: 52
Determinants of viscoelasticity and flow activation energy in biomolecular condensates
Ibraheem Alshareedah, Anurag Singh, Sean Yang, et al.
Science Advances (2024) Vol. 10, Iss. 7
Open Access | Times Cited: 32
Ibraheem Alshareedah, Anurag Singh, Sean Yang, et al.
Science Advances (2024) Vol. 10, Iss. 7
Open Access | Times Cited: 32
Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity
Amy R. Strom, Yoonji Kim, Hongbo Zhao, et al.
Cell (2024) Vol. 187, Iss. 19, pp. 5282-5297.e20
Open Access | Times Cited: 24
Amy R. Strom, Yoonji Kim, Hongbo Zhao, et al.
Cell (2024) Vol. 187, Iss. 19, pp. 5282-5297.e20
Open Access | Times Cited: 24
Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function
Nathaniel Hess, Jerelle A. Joseph
Trends in Biochemical Sciences (2025)
Open Access | Times Cited: 3
Nathaniel Hess, Jerelle A. Joseph
Trends in Biochemical Sciences (2025)
Open Access | Times Cited: 3
The phenylalanine-and-glycine repeats of NUP98 oncofusions form condensates that selectively partition transcriptional coactivators
Jeong Hyun Ahn, Yiran Guo, Heankel Lyons, et al.
Molecular Cell (2025)
Closed Access | Times Cited: 2
Jeong Hyun Ahn, Yiran Guo, Heankel Lyons, et al.
Molecular Cell (2025)
Closed Access | Times Cited: 2
Biomolecular condensates at sites of DNA damage: More than just a phase
Vincent Spegg, Matthias Altmeyer
DNA repair (2021) Vol. 106, pp. 103179-103179
Open Access | Times Cited: 76
Vincent Spegg, Matthias Altmeyer
DNA repair (2021) Vol. 106, pp. 103179-103179
Open Access | Times Cited: 76
On the Potential of Machine Learning to Examine the Relationship Between Sequence, Structure, Dynamics and Function of Intrinsically Disordered Proteins
Kresten Lindorff‐Larsen, Birthe B. Kragelund
Journal of Molecular Biology (2021) Vol. 433, Iss. 20, pp. 167196-167196
Open Access | Times Cited: 76
Kresten Lindorff‐Larsen, Birthe B. Kragelund
Journal of Molecular Biology (2021) Vol. 433, Iss. 20, pp. 167196-167196
Open Access | Times Cited: 76
Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands
Elaine C. Petronilho, Murilo M. Pedrote, Mayra A. Marques, et al.
Chemical Science (2021) Vol. 12, Iss. 21, pp. 7334-7349
Open Access | Times Cited: 74
Elaine C. Petronilho, Murilo M. Pedrote, Mayra A. Marques, et al.
Chemical Science (2021) Vol. 12, Iss. 21, pp. 7334-7349
Open Access | Times Cited: 74
Testing the super-enhancer concept
Gerd A. Blobel, Douglas R. Higgs, Jennifer A. Mitchell, et al.
Nature Reviews Genetics (2021) Vol. 22, Iss. 12, pp. 749-755
Closed Access | Times Cited: 73
Gerd A. Blobel, Douglas R. Higgs, Jennifer A. Mitchell, et al.
Nature Reviews Genetics (2021) Vol. 22, Iss. 12, pp. 749-755
Closed Access | Times Cited: 73
Principles Governing the Phase Separation of Multidomain Proteins
Priyesh Mohanty, Utkarsh Kapoor, Dinesh Sundaravadivelu Devarajan, et al.
Biochemistry (2022) Vol. 61, Iss. 22, pp. 2443-2455
Open Access | Times Cited: 67
Priyesh Mohanty, Utkarsh Kapoor, Dinesh Sundaravadivelu Devarajan, et al.
Biochemistry (2022) Vol. 61, Iss. 22, pp. 2443-2455
Open Access | Times Cited: 67
Genetic variation associated with condensate dysregulation in disease
Salman F. Banani, Lena K. Afeyan, Susana Wilson Hawken, et al.
Developmental Cell (2022) Vol. 57, Iss. 14, pp. 1776-1788.e8
Open Access | Times Cited: 63
Salman F. Banani, Lena K. Afeyan, Susana Wilson Hawken, et al.
Developmental Cell (2022) Vol. 57, Iss. 14, pp. 1776-1788.e8
Open Access | Times Cited: 63