OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Autonomous Discovery in the Chemical Sciences Part I: Progress
Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen
Angewandte Chemie International Edition (2019) Vol. 59, Iss. 51, pp. 22858-22893
Open Access | Times Cited: 175
Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen
Angewandte Chemie International Edition (2019) Vol. 59, Iss. 51, pp. 22858-22893
Open Access | Times Cited: 175
Showing 1-25 of 175 citing articles:
Molecular representations in AI-driven drug discovery: a review and practical guide
Laurianne David, Amol Thakkar, Rocío Mercado, et al.
Journal of Cheminformatics (2020) Vol. 12, Iss. 1
Open Access | Times Cited: 384
Laurianne David, Amol Thakkar, Rocío Mercado, et al.
Journal of Cheminformatics (2020) Vol. 12, Iss. 1
Open Access | Times Cited: 384
Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery
Andrew Rosen, Shaelyn Iyer, Debmalya Ray, et al.
Matter (2021) Vol. 4, Iss. 5, pp. 1578-1597
Open Access | Times Cited: 293
Andrew Rosen, Shaelyn Iyer, Debmalya Ray, et al.
Matter (2021) Vol. 4, Iss. 5, pp. 1578-1597
Open Access | Times Cited: 293
Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles
Lichen Liu, Avelino Corma
Chemical Reviews (2023) Vol. 123, Iss. 8, pp. 4855-4933
Open Access | Times Cited: 215
Lichen Liu, Avelino Corma
Chemical Reviews (2023) Vol. 123, Iss. 8, pp. 4855-4933
Open Access | Times Cited: 215
Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning
Aditya Nandy, Chenru Duan, Michael G. Taylor, et al.
Chemical Reviews (2021) Vol. 121, Iss. 16, pp. 9927-10000
Closed Access | Times Cited: 197
Aditya Nandy, Chenru Duan, Michael G. Taylor, et al.
Chemical Reviews (2021) Vol. 121, Iss. 16, pp. 9927-10000
Closed Access | Times Cited: 197
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, et al.
Patterns (2020) Vol. 1, Iss. 9, pp. 100142-100142
Open Access | Times Cited: 179
Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, et al.
Patterns (2020) Vol. 1, Iss. 9, pp. 100142-100142
Open Access | Times Cited: 179
Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems
John A. Keith, Valentín Vassilev-Galindo, Bingqing Cheng, et al.
Chemical Reviews (2021) Vol. 121, Iss. 16, pp. 9816-9872
Open Access | Times Cited: 175
John A. Keith, Valentín Vassilev-Galindo, Bingqing Cheng, et al.
Chemical Reviews (2021) Vol. 121, Iss. 16, pp. 9816-9872
Open Access | Times Cited: 175
A field guide to flow chemistry for synthetic organic chemists
Luca Capaldo, Zhenghui Wen, Timothy Noël
Chemical Science (2023) Vol. 14, Iss. 16, pp. 4230-4247
Open Access | Times Cited: 174
Luca Capaldo, Zhenghui Wen, Timothy Noël
Chemical Science (2023) Vol. 14, Iss. 16, pp. 4230-4247
Open Access | Times Cited: 174
Data-science driven autonomous process optimization
Melodie Christensen, Lars P. E. Yunker, Folarin Adedeji, et al.
Communications Chemistry (2021) Vol. 4, Iss. 1
Open Access | Times Cited: 168
Melodie Christensen, Lars P. E. Yunker, Folarin Adedeji, et al.
Communications Chemistry (2021) Vol. 4, Iss. 1
Open Access | Times Cited: 168
Generative Models as an Emerging Paradigm in the Chemical Sciences
Dylan M. Anstine, Olexandr Isayev
Journal of the American Chemical Society (2023) Vol. 145, Iss. 16, pp. 8736-8750
Open Access | Times Cited: 142
Dylan M. Anstine, Olexandr Isayev
Journal of the American Chemical Society (2023) Vol. 145, Iss. 16, pp. 8736-8750
Open Access | Times Cited: 142
Machine‐learning scoring functions for structure‐based virtual screening
Hongjian Li, Kam‐Heung Sze, Gang Lü, et al.
Wiley Interdisciplinary Reviews Computational Molecular Science (2020) Vol. 11, Iss. 1
Closed Access | Times Cited: 141
Hongjian Li, Kam‐Heung Sze, Gang Lü, et al.
Wiley Interdisciplinary Reviews Computational Molecular Science (2020) Vol. 11, Iss. 1
Closed Access | Times Cited: 141
Predicting Reaction Yields via Supervised Learning
A. Zuranski, Jesus I. Martinez Alvarado, Benjamin J. Shields, et al.
Accounts of Chemical Research (2021) Vol. 54, Iss. 8, pp. 1856-1865
Closed Access | Times Cited: 134
A. Zuranski, Jesus I. Martinez Alvarado, Benjamin J. Shields, et al.
Accounts of Chemical Research (2021) Vol. 54, Iss. 8, pp. 1856-1865
Closed Access | Times Cited: 134
The Evolution of Data-Driven Modeling in Organic Chemistry
Wendy L. Williams, Lingyu Zeng, Tobias Gensch, et al.
ACS Central Science (2021) Vol. 7, Iss. 10, pp. 1622-1637
Open Access | Times Cited: 110
Wendy L. Williams, Lingyu Zeng, Tobias Gensch, et al.
ACS Central Science (2021) Vol. 7, Iss. 10, pp. 1622-1637
Open Access | Times Cited: 110
Toward Machine Learning-Enhanced High-Throughput Experimentation
Natalie S. Eyke, Brent A. Koscher, Klavs F. Jensen
Trends in Chemistry (2021) Vol. 3, Iss. 2, pp. 120-132
Open Access | Times Cited: 104
Natalie S. Eyke, Brent A. Koscher, Klavs F. Jensen
Trends in Chemistry (2021) Vol. 3, Iss. 2, pp. 120-132
Open Access | Times Cited: 104
Ready, Set, Flow! Automated Continuous Synthesis and Optimization
C. Breen, Anirudh M. K. Nambiar, Timothy F. Jamison, et al.
Trends in Chemistry (2021) Vol. 3, Iss. 5, pp. 373-386
Open Access | Times Cited: 102
C. Breen, Anirudh M. K. Nambiar, Timothy F. Jamison, et al.
Trends in Chemistry (2021) Vol. 3, Iss. 5, pp. 373-386
Open Access | Times Cited: 102
Gryffin : An algorithm for Bayesian optimization of categorical variables informed by expert knowledge
Florian Häse, Matteo Aldeghi, Riley J. Hickman, et al.
Applied Physics Reviews (2021) Vol. 8, Iss. 3
Open Access | Times Cited: 98
Florian Häse, Matteo Aldeghi, Riley J. Hickman, et al.
Applied Physics Reviews (2021) Vol. 8, Iss. 3
Open Access | Times Cited: 98
AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning
Amanda A. Volk, Robert W. Epps, Daniel T. Yonemoto, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 74
Amanda A. Volk, Robert W. Epps, Daniel T. Yonemoto, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 74
From Platform to Knowledge Graph: Evolution of Laboratory Automation
Jiaru Bai, Liwei Cao, Sebastian Mosbach, et al.
JACS Au (2022) Vol. 2, Iss. 2, pp. 292-309
Open Access | Times Cited: 67
Jiaru Bai, Liwei Cao, Sebastian Mosbach, et al.
JACS Au (2022) Vol. 2, Iss. 2, pp. 292-309
Open Access | Times Cited: 67
Predictive chemistry: machine learning for reaction deployment, reaction development, and reaction discovery
Zhengkai Tu, Thijs Stuyver, Connor W. Coley
Chemical Science (2022) Vol. 14, Iss. 2, pp. 226-244
Open Access | Times Cited: 66
Zhengkai Tu, Thijs Stuyver, Connor W. Coley
Chemical Science (2022) Vol. 14, Iss. 2, pp. 226-244
Open Access | Times Cited: 66
Self-driving laboratories: A paradigm shift in nanomedicine development
Riley J. Hickman, Pauric Bannigan, Zeqing Bao, et al.
Matter (2023) Vol. 6, Iss. 4, pp. 1071-1081
Open Access | Times Cited: 37
Riley J. Hickman, Pauric Bannigan, Zeqing Bao, et al.
Matter (2023) Vol. 6, Iss. 4, pp. 1071-1081
Open Access | Times Cited: 37
A dynamic knowledge graph approach to distributed self-driving laboratories
Jiaru Bai, Sebastian Mosbach, Connor J. Taylor, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 18
Jiaru Bai, Sebastian Mosbach, Connor J. Taylor, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 18
Superlative mechanical energy absorbing efficiency discovered through self-driving lab-human partnership
Kelsey L. Snapp, Benjamin Verdier, Aldair E. Gongora, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 13
Kelsey L. Snapp, Benjamin Verdier, Aldair E. Gongora, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 13
Benchmarking the acceleration of materials discovery by sequential learning
Brian A. Rohr, Helge S. Stein, Dan Guevarra, et al.
Chemical Science (2020) Vol. 11, Iss. 10, pp. 2696-2706
Open Access | Times Cited: 113
Brian A. Rohr, Helge S. Stein, Dan Guevarra, et al.
Chemical Science (2020) Vol. 11, Iss. 10, pp. 2696-2706
Open Access | Times Cited: 113
Defining and Exploring Chemical Spaces
Connor W. Coley
Trends in Chemistry (2020) Vol. 3, Iss. 2, pp. 133-145
Open Access | Times Cited: 108
Connor W. Coley
Trends in Chemistry (2020) Vol. 3, Iss. 2, pp. 133-145
Open Access | Times Cited: 108
Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors
Yanfei Guan, Connor W. Coley, Haoyang Wu, et al.
Chemical Science (2020) Vol. 12, Iss. 6, pp. 2198-2208
Open Access | Times Cited: 101
Yanfei Guan, Connor W. Coley, Haoyang Wu, et al.
Chemical Science (2020) Vol. 12, Iss. 6, pp. 2198-2208
Open Access | Times Cited: 101
Active discovery of organic semiconductors
Christian Künkel, Johannes T. Margraf, Ke Chen, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 96
Christian Künkel, Johannes T. Margraf, Ke Chen, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 96