
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Low‐Bandgap Organic Bulk‐Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells
Shengfan Wu, Zhen Li, Jie Zhang, et al.
Advanced Materials (2021) Vol. 33, Iss. 51
Open Access | Times Cited: 120
Shengfan Wu, Zhen Li, Jie Zhang, et al.
Advanced Materials (2021) Vol. 33, Iss. 51
Open Access | Times Cited: 120
Showing 1-25 of 120 citing articles:
Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact
Wei Peng, Kaitian Mao, Fengchun Cai, et al.
Science (2023) Vol. 379, Iss. 6633, pp. 683-690
Closed Access | Times Cited: 358
Wei Peng, Kaitian Mao, Fengchun Cai, et al.
Science (2023) Vol. 379, Iss. 6633, pp. 683-690
Closed Access | Times Cited: 358
Flexible self-charging power sources
Ruiyuan Liu, Zhong Lin Wang, Kenjiro Fukuda, et al.
Nature Reviews Materials (2022) Vol. 7, Iss. 11, pp. 870-886
Closed Access | Times Cited: 332
Ruiyuan Liu, Zhong Lin Wang, Kenjiro Fukuda, et al.
Nature Reviews Materials (2022) Vol. 7, Iss. 11, pp. 870-886
Closed Access | Times Cited: 332
Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact
Ludong Li, Yurui Wang, Xiaoyu Wang, et al.
Nature Energy (2022) Vol. 7, Iss. 8, pp. 708-717
Closed Access | Times Cited: 327
Ludong Li, Yurui Wang, Xiaoyu Wang, et al.
Nature Energy (2022) Vol. 7, Iss. 8, pp. 708-717
Closed Access | Times Cited: 327
The high open-circuit voltage of perovskite solar cells: a review
Guoying Wei, Ajay Kumar Jena, Gyu Min Kim, et al.
Energy & Environmental Science (2022) Vol. 15, Iss. 8, pp. 3171-3222
Closed Access | Times Cited: 309
Guoying Wei, Ajay Kumar Jena, Gyu Min Kim, et al.
Energy & Environmental Science (2022) Vol. 15, Iss. 8, pp. 3171-3222
Closed Access | Times Cited: 309
Record‐Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation
Lu Yang, Jiangshan Feng, Zhike Liu, et al.
Advanced Materials (2022) Vol. 34, Iss. 24
Closed Access | Times Cited: 308
Lu Yang, Jiangshan Feng, Zhike Liu, et al.
Advanced Materials (2022) Vol. 34, Iss. 24
Closed Access | Times Cited: 308
Pre‐Buried Additive for Cross‐Layer Modification in Flexible Perovskite Solar Cells with Efficiency Exceeding 22%
Zhonghao Zheng, Faming Li, Jue Gong, et al.
Advanced Materials (2022) Vol. 34, Iss. 21
Closed Access | Times Cited: 214
Zhonghao Zheng, Faming Li, Jue Gong, et al.
Advanced Materials (2022) Vol. 34, Iss. 21
Closed Access | Times Cited: 214
PTAA as Efficient Hole Transport Materials in Perovskite Solar Cells: A Review
Yihao Wang, Leiping Duan, Meng Zhang, et al.
Solar RRL (2022) Vol. 6, Iss. 8
Open Access | Times Cited: 158
Yihao Wang, Leiping Duan, Meng Zhang, et al.
Solar RRL (2022) Vol. 6, Iss. 8
Open Access | Times Cited: 158
Co‐assembled Monolayers as Hole‐Selective Contact for High‐Performance Inverted Perovskite Solar Cells with Optimized Recombination Loss and Long‐Term Stability
Xiang Deng, Qi Feng, Fengzhu Li, et al.
Angewandte Chemie International Edition (2022) Vol. 61, Iss. 30
Closed Access | Times Cited: 146
Xiang Deng, Qi Feng, Fengzhu Li, et al.
Angewandte Chemie International Edition (2022) Vol. 61, Iss. 30
Closed Access | Times Cited: 146
Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35%
Danpeng Gao, Bo Li, Zhen Li, et al.
Advanced Materials (2022) Vol. 35, Iss. 3
Closed Access | Times Cited: 121
Danpeng Gao, Bo Li, Zhen Li, et al.
Advanced Materials (2022) Vol. 35, Iss. 3
Closed Access | Times Cited: 121
Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability
Jie Zeng, Le‐Yu Bi, Yuanhang Cheng, et al.
Deleted Journal (2022) Vol. 1, pp. e9120004-e9120004
Open Access | Times Cited: 116
Jie Zeng, Le‐Yu Bi, Yuanhang Cheng, et al.
Deleted Journal (2022) Vol. 1, pp. e9120004-e9120004
Open Access | Times Cited: 116
Modulating the deep-level defects and charge extraction for efficient perovskite solar cells with high fill factor over 86%
Xingcheng Li, Xin Wu, Bo Li, et al.
Energy & Environmental Science (2022) Vol. 15, Iss. 11, pp. 4813-4822
Closed Access | Times Cited: 113
Xingcheng Li, Xin Wu, Bo Li, et al.
Energy & Environmental Science (2022) Vol. 15, Iss. 11, pp. 4813-4822
Closed Access | Times Cited: 113
Recent progress in perovskite solar cells: material science
Jiang‐Yang Shao, Dongmei Li, Jiangjian Shi, et al.
Science China Chemistry (2022) Vol. 66, Iss. 1, pp. 10-64
Closed Access | Times Cited: 111
Jiang‐Yang Shao, Dongmei Li, Jiangjian Shi, et al.
Science China Chemistry (2022) Vol. 66, Iss. 1, pp. 10-64
Closed Access | Times Cited: 111
Device Performance of Emerging Photovoltaic Materials (Version 3)
Osbel Almora, Derya Baran, Guillermo C. Bazan, et al.
Advanced Energy Materials (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 104
Osbel Almora, Derya Baran, Guillermo C. Bazan, et al.
Advanced Energy Materials (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 104
Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells
Lisha Xie, Songyu Du, Jun Li, et al.
Energy & Environmental Science (2023) Vol. 16, Iss. 11, pp. 5423-5433
Closed Access | Times Cited: 97
Lisha Xie, Songyu Du, Jun Li, et al.
Energy & Environmental Science (2023) Vol. 16, Iss. 11, pp. 5423-5433
Closed Access | Times Cited: 97
Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications
Yuanji Gao, Keqing Huang, Caoyu Long, et al.
ACS Energy Letters (2022) Vol. 7, Iss. 4, pp. 1412-1445
Closed Access | Times Cited: 91
Yuanji Gao, Keqing Huang, Caoyu Long, et al.
ACS Energy Letters (2022) Vol. 7, Iss. 4, pp. 1412-1445
Closed Access | Times Cited: 91
Functional Layers of Inverted Flexible Perovskite Solar Cells and Effective Technologies for Device Commercialization
Zhiyuan Xu, Qixin Zhuang, Yuqin Zhou, et al.
Small Structures (2023) Vol. 4, Iss. 5
Open Access | Times Cited: 90
Zhiyuan Xu, Qixin Zhuang, Yuqin Zhou, et al.
Small Structures (2023) Vol. 4, Iss. 5
Open Access | Times Cited: 90
Self-Powered Sensing in Wearable Electronics─A Paradigm Shift Technology
Wei Tang, Qijun Sun, Zhong Lin Wang
Chemical Reviews (2023) Vol. 123, Iss. 21, pp. 12105-12134
Open Access | Times Cited: 86
Wei Tang, Qijun Sun, Zhong Lin Wang
Chemical Reviews (2023) Vol. 123, Iss. 21, pp. 12105-12134
Open Access | Times Cited: 86
Backbone Engineering Enables Highly Efficient Polymer Hole‐Transporting Materials for Inverted Perovskite Solar Cells
Xin Wu, Danpeng Gao, Xianglang Sun, et al.
Advanced Materials (2022) Vol. 35, Iss. 12
Closed Access | Times Cited: 76
Xin Wu, Danpeng Gao, Xianglang Sun, et al.
Advanced Materials (2022) Vol. 35, Iss. 12
Closed Access | Times Cited: 76
Age of Flexible Electronics: Emerging Trends in Soft Multifunctional Sensors
Jeng‐Hun Lee, Kilwon Cho, Jang‐Kyo Kim
Advanced Materials (2024) Vol. 36, Iss. 16
Open Access | Times Cited: 74
Jeng‐Hun Lee, Kilwon Cho, Jang‐Kyo Kim
Advanced Materials (2024) Vol. 36, Iss. 16
Open Access | Times Cited: 74
Prospects and challenges for perovskite-organic tandem solar cells
Shengfan Wu, Ming Liu, Alex K.‐Y. Jen
Joule (2023) Vol. 7, Iss. 3, pp. 484-502
Open Access | Times Cited: 67
Shengfan Wu, Ming Liu, Alex K.‐Y. Jen
Joule (2023) Vol. 7, Iss. 3, pp. 484-502
Open Access | Times Cited: 67
Wearable perovskite solar cells by aligned liquid crystal elastomers
Zengqi Huang, Lin Li, Tingqing Wu, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 62
Zengqi Huang, Lin Li, Tingqing Wu, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 62
Perovskite–organic tandem solar cells
Kai Oliver Brinkmann, Pang Wang, Felix Lang, et al.
Nature Reviews Materials (2024) Vol. 9, Iss. 3, pp. 202-217
Closed Access | Times Cited: 62
Kai Oliver Brinkmann, Pang Wang, Felix Lang, et al.
Nature Reviews Materials (2024) Vol. 9, Iss. 3, pp. 202-217
Closed Access | Times Cited: 62
Progress and Challenges Toward Effective Flexible Perovskite Solar Cells
Xiongjie Li, Haixuan Yu, Zhirong Liu, et al.
Nano-Micro Letters (2023) Vol. 15, Iss. 1
Open Access | Times Cited: 57
Xiongjie Li, Haixuan Yu, Zhirong Liu, et al.
Nano-Micro Letters (2023) Vol. 15, Iss. 1
Open Access | Times Cited: 57
Realizing 23.9% Flexible Perovskite Solar Cells via Alleviating the Residual Strain Induced by Delayed Heat Transfer
Xiaoxiao Wu, Guiying Xu, Fu Yang, et al.
ACS Energy Letters (2023) Vol. 8, Iss. 9, pp. 3750-3759
Closed Access | Times Cited: 53
Xiaoxiao Wu, Guiying Xu, Fu Yang, et al.
ACS Energy Letters (2023) Vol. 8, Iss. 9, pp. 3750-3759
Closed Access | Times Cited: 53
Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells
Jin Zhou, Shiqiang Fu, Shun Zhou, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 51
Jin Zhou, Shiqiang Fu, Shun Zhou, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 51