
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Environment Tolerant Conductive Nanocomposite Organohydrogels as Flexible Strain Sensors and Power Sources for Sustainable Electronics
Hongling Sun, Yi Zhao, Sulin Jiao, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 24
Closed Access | Times Cited: 262
Hongling Sun, Yi Zhao, Sulin Jiao, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 24
Closed Access | Times Cited: 262
Showing 1-25 of 262 citing articles:
Hydrogel‐Based Flexible Electronics
Lixuan Hu, Pei Lin Chee, Sigit Sugiarto, et al.
Advanced Materials (2022) Vol. 35, Iss. 14
Closed Access | Times Cited: 419
Lixuan Hu, Pei Lin Chee, Sigit Sugiarto, et al.
Advanced Materials (2022) Vol. 35, Iss. 14
Closed Access | Times Cited: 419
Ultra‐Sensitive, Deformable, and Transparent Triboelectric Tactile Sensor Based on Micro‐Pyramid Patterned Ionic Hydrogel for Interactive Human–Machine Interfaces
Kai Tao, Zhensheng Chen, Jiahao Yu, et al.
Advanced Science (2022) Vol. 9, Iss. 10
Open Access | Times Cited: 225
Kai Tao, Zhensheng Chen, Jiahao Yu, et al.
Advanced Science (2022) Vol. 9, Iss. 10
Open Access | Times Cited: 225
Recent Advances in Carbon Material‐Based Multifunctional Sensors and Their Applications in Electronic Skin Systems
Yunjian Guo, Wei Xiao, Song Gao, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 40
Closed Access | Times Cited: 194
Yunjian Guo, Wei Xiao, Song Gao, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 40
Closed Access | Times Cited: 194
Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel
Min Wu, Xin Wang, Yifan Xia, et al.
Nano Energy (2022) Vol. 95, pp. 106967-106967
Closed Access | Times Cited: 176
Min Wu, Xin Wang, Yifan Xia, et al.
Nano Energy (2022) Vol. 95, pp. 106967-106967
Closed Access | Times Cited: 176
Environmentally Tough and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic Interference Shielding Performances
Yuanhang Yu, Peng Yi, Wenbin Xu, et al.
Nano-Micro Letters (2022) Vol. 14, Iss. 1
Open Access | Times Cited: 171
Yuanhang Yu, Peng Yi, Wenbin Xu, et al.
Nano-Micro Letters (2022) Vol. 14, Iss. 1
Open Access | Times Cited: 171
Ultrastretchable, Self-Healing Conductive Hydrogel-Based Triboelectric Nanogenerators for Human–Computer Interaction
Hao Zhang, Dongzhi Zhang, Zihu Wang, et al.
ACS Applied Materials & Interfaces (2023) Vol. 15, Iss. 4, pp. 5128-5138
Closed Access | Times Cited: 167
Hao Zhang, Dongzhi Zhang, Zihu Wang, et al.
ACS Applied Materials & Interfaces (2023) Vol. 15, Iss. 4, pp. 5128-5138
Closed Access | Times Cited: 167
From Glutinous‐Rice‐Inspired Adhesive Organohydrogels to Flexible Electronic Devices Toward Wearable Sensing, Power Supply, and Energy Storage
Hongwei Zhou, Jialiang Lai, Bohui Zheng, et al.
Advanced Functional Materials (2021) Vol. 32, Iss. 1
Closed Access | Times Cited: 155
Hongwei Zhou, Jialiang Lai, Bohui Zheng, et al.
Advanced Functional Materials (2021) Vol. 32, Iss. 1
Closed Access | Times Cited: 155
Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics
Lijie Sun, Hongfei Huang, Qiyu Ding, et al.
Advanced Fiber Materials (2021) Vol. 4, Iss. 1, pp. 98-107
Closed Access | Times Cited: 125
Lijie Sun, Hongfei Huang, Qiyu Ding, et al.
Advanced Fiber Materials (2021) Vol. 4, Iss. 1, pp. 98-107
Closed Access | Times Cited: 125
Self‐Shaping Soft Electronics Based on Patterned Hydrogel with Stencil‐Printed Liquid Metal
Xing Peng Hao, Chenyu Li, Chuan Wei Zhang, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 47
Closed Access | Times Cited: 121
Xing Peng Hao, Chenyu Li, Chuan Wei Zhang, et al.
Advanced Functional Materials (2021) Vol. 31, Iss. 47
Closed Access | Times Cited: 121
Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions
Jiaying Mo, Yuhang Dai, Chao Zhang, et al.
Materials Horizons (2021) Vol. 8, Iss. 12, pp. 3409-3416
Closed Access | Times Cited: 121
Jiaying Mo, Yuhang Dai, Chao Zhang, et al.
Materials Horizons (2021) Vol. 8, Iss. 12, pp. 3409-3416
Closed Access | Times Cited: 121
Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications
Qiongling Ding, Zixuan Wu, Kai Tao, et al.
Materials Horizons (2022) Vol. 9, Iss. 5, pp. 1356-1386
Closed Access | Times Cited: 117
Qiongling Ding, Zixuan Wu, Kai Tao, et al.
Materials Horizons (2022) Vol. 9, Iss. 5, pp. 1356-1386
Closed Access | Times Cited: 117
Fatigue‐Resistant Conducting Polymer Hydrogels as Strain Sensor for Underwater Robotics
Zhilin Zhang, Guangda Chen, Yuhua Xue, et al.
Advanced Functional Materials (2023) Vol. 33, Iss. 42
Closed Access | Times Cited: 114
Zhilin Zhang, Guangda Chen, Yuhua Xue, et al.
Advanced Functional Materials (2023) Vol. 33, Iss. 42
Closed Access | Times Cited: 114
Mechanically Robust and Transparent Organohydrogel‐Based E‐Skin Nanoengineered from Natural Skin
Zhongxue Bai, Xuechuan Wang, Manhui Zheng, et al.
Advanced Functional Materials (2023) Vol. 33, Iss. 15
Closed Access | Times Cited: 110
Zhongxue Bai, Xuechuan Wang, Manhui Zheng, et al.
Advanced Functional Materials (2023) Vol. 33, Iss. 15
Closed Access | Times Cited: 110
Hydrogels as Soft Ionic Conductors in Flexible and Wearable Triboelectric Nanogenerators
Yinghong Wu, Yang Luo, Tyler J. Cuthbert, et al.
Advanced Science (2022) Vol. 9, Iss. 11
Open Access | Times Cited: 108
Yinghong Wu, Yang Luo, Tyler J. Cuthbert, et al.
Advanced Science (2022) Vol. 9, Iss. 11
Open Access | Times Cited: 108
Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at − 30 °C
Zhenyu Xu, Fenghua Zhou, Huizhen Yan, et al.
Nano Energy (2021) Vol. 90, pp. 106614-106614
Closed Access | Times Cited: 106
Zhenyu Xu, Fenghua Zhou, Huizhen Yan, et al.
Nano Energy (2021) Vol. 90, pp. 106614-106614
Closed Access | Times Cited: 106
Adhesive Ionohydrogels Based on Ionic Liquid/Water Binary Solvents with Freezing Tolerance for Flexible Ionotronic Devices
Xinrui Zhang, Chen Cui, Sheng Chen, et al.
Chemistry of Materials (2022) Vol. 34, Iss. 3, pp. 1065-1077
Closed Access | Times Cited: 106
Xinrui Zhang, Chen Cui, Sheng Chen, et al.
Chemistry of Materials (2022) Vol. 34, Iss. 3, pp. 1065-1077
Closed Access | Times Cited: 106
Ultra-stable and self-healing coordinated collagen-based multifunctional double-network organohydrogel e-skin for multimodal sensing monitoring of strain-resistance, bioelectrode, and self-powered triboelectric nanogenerator
Bin Song, Xin Fan, Jialu Shen, et al.
Chemical Engineering Journal (2023) Vol. 474, pp. 145780-145780
Closed Access | Times Cited: 102
Bin Song, Xin Fan, Jialu Shen, et al.
Chemical Engineering Journal (2023) Vol. 474, pp. 145780-145780
Closed Access | Times Cited: 102
Multifunctional, Ultra‐Tough Organohydrogel E‐Skin Reinforced by Hierarchical Goatskin Fibers Skeleton for Energy Harvesting and Self‐Powered Monitoring
Xin Fan, Ke Tao, Haibin Gu
Advanced Functional Materials (2023) Vol. 33, Iss. 42
Closed Access | Times Cited: 99
Xin Fan, Ke Tao, Haibin Gu
Advanced Functional Materials (2023) Vol. 33, Iss. 42
Closed Access | Times Cited: 99
Conductive Hydrogel for Flexible Bioelectronic Device: Current Progress and Future Perspective
Qinhong He, Yan Cheng, Yijia Deng, et al.
Advanced Functional Materials (2023) Vol. 34, Iss. 1
Closed Access | Times Cited: 98
Qinhong He, Yan Cheng, Yijia Deng, et al.
Advanced Functional Materials (2023) Vol. 34, Iss. 1
Closed Access | Times Cited: 98
A conductive hydrogel based on nature polymer agar with self-healing ability and stretchability for flexible sensors
Zhen Nie, Kelin Peng, Lizhi Lin, et al.
Chemical Engineering Journal (2022) Vol. 454, pp. 139843-139843
Closed Access | Times Cited: 89
Zhen Nie, Kelin Peng, Lizhi Lin, et al.
Chemical Engineering Journal (2022) Vol. 454, pp. 139843-139843
Closed Access | Times Cited: 89
High‐Performance Strain Sensors Based on Organohydrogel Microsphere Film for Wearable Human–Computer Interfacing
Kankan Zhai, Hao Wang, Qiongling Ding, et al.
Advanced Science (2022) Vol. 10, Iss. 6
Open Access | Times Cited: 88
Kankan Zhai, Hao Wang, Qiongling Ding, et al.
Advanced Science (2022) Vol. 10, Iss. 6
Open Access | Times Cited: 88
Trehalose-enhanced ionic conductive hydrogels with extreme stretchability, self-adhesive and anti-freezing abilities for both flexible strain sensor and all-solid-state supercapacitor
Haolin Cai, Dongzhi Zhang, Hao Zhang, et al.
Chemical Engineering Journal (2023) Vol. 472, pp. 144849-144849
Closed Access | Times Cited: 86
Haolin Cai, Dongzhi Zhang, Hao Zhang, et al.
Chemical Engineering Journal (2023) Vol. 472, pp. 144849-144849
Closed Access | Times Cited: 86
Carbon Dots‐Based Ultrastretchable and Conductive Hydrogels for High‐Performance Tactile Sensors and Self‐Powered Electronic Skin
Yunfei Yu, Yiyu Feng, Feng Liu, et al.
Small (2022) Vol. 19, Iss. 31
Closed Access | Times Cited: 84
Yunfei Yu, Yiyu Feng, Feng Liu, et al.
Small (2022) Vol. 19, Iss. 31
Closed Access | Times Cited: 84
Dual‐Network Liquid Metal Hydrogel with Integrated Solar‐Driven Evaporation, Multi‐Sensory Applications, and Electricity Generation via Enhanced Light Absorption and Bénard–Marangoni Effect
Zechang Wei, Yibo Wang, Chenyang Cai, et al.
Advanced Functional Materials (2022) Vol. 32, Iss. 41
Closed Access | Times Cited: 80
Zechang Wei, Yibo Wang, Chenyang Cai, et al.
Advanced Functional Materials (2022) Vol. 32, Iss. 41
Closed Access | Times Cited: 80
Multimodal sensing and therapeutic systems for wound healing and management: A review
Shao-Hao Lu, Mohamadmahdi Samandari, Caihong Li, et al.
Sensors and Actuators Reports (2022) Vol. 4, pp. 100075-100075
Open Access | Times Cited: 75
Shao-Hao Lu, Mohamadmahdi Samandari, Caihong Li, et al.
Sensors and Actuators Reports (2022) Vol. 4, pp. 100075-100075
Open Access | Times Cited: 75