
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Autonomous Discovery in the Chemical Sciences Part II: Outlook
Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen
Angewandte Chemie International Edition (2019) Vol. 59, Iss. 52, pp. 23414-23436
Open Access | Times Cited: 236
Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen
Angewandte Chemie International Edition (2019) Vol. 59, Iss. 52, pp. 23414-23436
Open Access | Times Cited: 236
Showing 26-50 of 236 citing articles:
AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning
Amanda A. Volk, Robert W. Epps, Daniel T. Yonemoto, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 84
Amanda A. Volk, Robert W. Epps, Daniel T. Yonemoto, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 84
Predictive chemistry: machine learning for reaction deployment, reaction development, and reaction discovery
Zhengkai Tu, Thijs Stuyver, Connor W. Coley
Chemical Science (2022) Vol. 14, Iss. 2, pp. 226-244
Open Access | Times Cited: 75
Zhengkai Tu, Thijs Stuyver, Connor W. Coley
Chemical Science (2022) Vol. 14, Iss. 2, pp. 226-244
Open Access | Times Cited: 75
From Platform to Knowledge Graph: Evolution of Laboratory Automation
Jiaru Bai, Liwei Cao, Sebastian Mosbach, et al.
JACS Au (2022) Vol. 2, Iss. 2, pp. 292-309
Open Access | Times Cited: 70
Jiaru Bai, Liwei Cao, Sebastian Mosbach, et al.
JACS Au (2022) Vol. 2, Iss. 2, pp. 292-309
Open Access | Times Cited: 70
Revolutionizing drug formulation development: The increasing impact of machine learning
Zeqing Bao, Jack Bufton, Riley J. Hickman, et al.
Advanced Drug Delivery Reviews (2023) Vol. 202, pp. 115108-115108
Closed Access | Times Cited: 52
Zeqing Bao, Jack Bufton, Riley J. Hickman, et al.
Advanced Drug Delivery Reviews (2023) Vol. 202, pp. 115108-115108
Closed Access | Times Cited: 52
Self-driving laboratories: A paradigm shift in nanomedicine development
Riley J. Hickman, Pauric Bannigan, Zeqing Bao, et al.
Matter (2023) Vol. 6, Iss. 4, pp. 1071-1081
Open Access | Times Cited: 41
Riley J. Hickman, Pauric Bannigan, Zeqing Bao, et al.
Matter (2023) Vol. 6, Iss. 4, pp. 1071-1081
Open Access | Times Cited: 41
A dynamic knowledge graph approach to distributed self-driving laboratories
Jiaru Bai, Sebastian Mosbach, Connor J. Taylor, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 21
Jiaru Bai, Sebastian Mosbach, Connor J. Taylor, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 21
Artificial intelligence in drug development
Kang Zhang, Xin Yang, Yifei Wang, et al.
Nature Medicine (2025) Vol. 31, Iss. 1, pp. 45-59
Closed Access | Times Cited: 11
Kang Zhang, Xin Yang, Yifei Wang, et al.
Nature Medicine (2025) Vol. 31, Iss. 1, pp. 45-59
Closed Access | Times Cited: 11
Benchmarking the acceleration of materials discovery by sequential learning
Brian A. Rohr, Helge S. Stein, Dan Guevarra, et al.
Chemical Science (2020) Vol. 11, Iss. 10, pp. 2696-2706
Open Access | Times Cited: 118
Brian A. Rohr, Helge S. Stein, Dan Guevarra, et al.
Chemical Science (2020) Vol. 11, Iss. 10, pp. 2696-2706
Open Access | Times Cited: 118
Defining and Exploring Chemical Spaces
Connor W. Coley
Trends in Chemistry (2020) Vol. 3, Iss. 2, pp. 133-145
Open Access | Times Cited: 111
Connor W. Coley
Trends in Chemistry (2020) Vol. 3, Iss. 2, pp. 133-145
Open Access | Times Cited: 111
Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors
Yanfei Guan, Connor W. Coley, Haoyang Wu, et al.
Chemical Science (2020) Vol. 12, Iss. 6, pp. 2198-2208
Open Access | Times Cited: 107
Yanfei Guan, Connor W. Coley, Haoyang Wu, et al.
Chemical Science (2020) Vol. 12, Iss. 6, pp. 2198-2208
Open Access | Times Cited: 107
Ready, Set, Flow! Automated Continuous Synthesis and Optimization
C. Breen, Anirudh M. K. Nambiar, Timothy F. Jamison, et al.
Trends in Chemistry (2021) Vol. 3, Iss. 5, pp. 373-386
Open Access | Times Cited: 102
C. Breen, Anirudh M. K. Nambiar, Timothy F. Jamison, et al.
Trends in Chemistry (2021) Vol. 3, Iss. 5, pp. 373-386
Open Access | Times Cited: 102
Designing and understanding light-harvesting devices with machine learning
Florian Häse, Loı̈c M. Roch, Pascal Friederich, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 97
Florian Häse, Loı̈c M. Roch, Pascal Friederich, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 97
Inverse methods for design of soft materials
Zachary M. Sherman, Michael P. Howard, Beth A. Lindquist, et al.
The Journal of Chemical Physics (2020) Vol. 152, Iss. 14
Open Access | Times Cited: 90
Zachary M. Sherman, Michael P. Howard, Beth A. Lindquist, et al.
The Journal of Chemical Physics (2020) Vol. 152, Iss. 14
Open Access | Times Cited: 90
High‐Throughput Experimentation and Computational Freeway Lanes for Accelerated Battery Electrolyte and Interface Development Research
Anass Benayad, Diddo Diddens, Andreas Heuer, et al.
Advanced Energy Materials (2021) Vol. 12, Iss. 17
Open Access | Times Cited: 87
Anass Benayad, Diddo Diddens, Andreas Heuer, et al.
Advanced Energy Materials (2021) Vol. 12, Iss. 17
Open Access | Times Cited: 87
Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules
Xiaobo Li, Phillip M. Maffettone, Yu Che, et al.
Chemical Science (2021) Vol. 12, Iss. 32, pp. 10742-10754
Open Access | Times Cited: 77
Xiaobo Li, Phillip M. Maffettone, Yu Che, et al.
Chemical Science (2021) Vol. 12, Iss. 32, pp. 10742-10754
Open Access | Times Cited: 77
Olympus: a benchmarking framework for noisy optimization and experiment planning
Florian Häse, Matteo Aldeghi, Riley J. Hickman, et al.
Machine Learning Science and Technology (2021) Vol. 2, Iss. 3, pp. 035021-035021
Open Access | Times Cited: 70
Florian Häse, Matteo Aldeghi, Riley J. Hickman, et al.
Machine Learning Science and Technology (2021) Vol. 2, Iss. 3, pp. 035021-035021
Open Access | Times Cited: 70
Transition to sustainable chemistry through digitalization
Peter Fantke, Claudio Cinquemani, Polina Yaseneva, et al.
Chem (2021) Vol. 7, Iss. 11, pp. 2866-2882
Open Access | Times Cited: 67
Peter Fantke, Claudio Cinquemani, Polina Yaseneva, et al.
Chem (2021) Vol. 7, Iss. 11, pp. 2866-2882
Open Access | Times Cited: 67
Efficient hyperparameter tuning for kernel ridge regression with Bayesian optimization
Annika Stuke, Patrick Rinke, Milica Todorović
Machine Learning Science and Technology (2021) Vol. 2, Iss. 3, pp. 035022-035022
Open Access | Times Cited: 66
Annika Stuke, Patrick Rinke, Milica Todorović
Machine Learning Science and Technology (2021) Vol. 2, Iss. 3, pp. 035022-035022
Open Access | Times Cited: 66
The case for data science in experimental chemistry: examples and recommendations
Junko Yano, Kelly J. Gaffney, John M. Gregoire, et al.
Nature Reviews Chemistry (2022) Vol. 6, Iss. 5, pp. 357-370
Open Access | Times Cited: 60
Junko Yano, Kelly J. Gaffney, John M. Gregoire, et al.
Nature Reviews Chemistry (2022) Vol. 6, Iss. 5, pp. 357-370
Open Access | Times Cited: 60
DOCKSTRING: Easy Molecular Docking Yields Better Benchmarks for Ligand Design
Miguel García-Ortegón, Gregor N. C. Simm, Austin Tripp, et al.
Journal of Chemical Information and Modeling (2022) Vol. 62, Iss. 15, pp. 3486-3502
Open Access | Times Cited: 58
Miguel García-Ortegón, Gregor N. C. Simm, Austin Tripp, et al.
Journal of Chemical Information and Modeling (2022) Vol. 62, Iss. 15, pp. 3486-3502
Open Access | Times Cited: 58
Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation
Yunchao Xie, Kianoosh Sattari, Chi Zhang, et al.
Progress in Materials Science (2022) Vol. 132, pp. 101043-101043
Open Access | Times Cited: 54
Yunchao Xie, Kianoosh Sattari, Chi Zhang, et al.
Progress in Materials Science (2022) Vol. 132, pp. 101043-101043
Open Access | Times Cited: 54
Enabling Modular Autonomous Feedback‐Loops in Materials Science through Hierarchical Experimental Laboratory Automation and Orchestration
Fuzhan Rahmanian, Jackson Flowers, Dan Guevarra, et al.
Advanced Materials Interfaces (2022) Vol. 9, Iss. 8
Open Access | Times Cited: 51
Fuzhan Rahmanian, Jackson Flowers, Dan Guevarra, et al.
Advanced Materials Interfaces (2022) Vol. 9, Iss. 8
Open Access | Times Cited: 51
Bayesian optimization with known experimental and design constraints for chemistry applications
Riley J. Hickman, Matteo Aldeghi, Florian Häse, et al.
Digital Discovery (2022) Vol. 1, Iss. 5, pp. 732-744
Open Access | Times Cited: 50
Riley J. Hickman, Matteo Aldeghi, Florian Häse, et al.
Digital Discovery (2022) Vol. 1, Iss. 5, pp. 732-744
Open Access | Times Cited: 50
Autonomous platforms for data-driven organic synthesis
Wenhao Gao, Priyanka Raghavan, Connor W. Coley
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 47
Wenhao Gao, Priyanka Raghavan, Connor W. Coley
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 47
Autonomous chemical science and engineering enabled by self-driving laboratories
Jeffrey A. Bennett, Milad Abolhasani
Current Opinion in Chemical Engineering (2022) Vol. 36, pp. 100831-100831
Open Access | Times Cited: 42
Jeffrey A. Bennett, Milad Abolhasani
Current Opinion in Chemical Engineering (2022) Vol. 36, pp. 100831-100831
Open Access | Times Cited: 42